Dedication

It don't mean a thing, if it ain't got that swing.

-- Duke Ellington and Irving Mills

Acknowledgments

Thanks to my Brasilian music teachers and friends:

Jorge Alabe, who got more rhythm out of one surdo than I'd ever heard in one place in my life, one sunday afternoon in Oakland, years ago. Jorge also invited me down to New Orleans to play with Casa Samba in the Heritage Jazz Festival even though I was pretty much a beginner. Being onstage in New Orleans, even in the back row, is a great thrill.

Mestre Beiçola, who always brings his love of life out in his performances, and gave me the experience of performing with Imperatriz Leopoldinense, the Number One Escola de Samba in Rio de Janeiro in the millennium year 2000.

Kim Atkinson for triggering the idea about focusing on swing feeling.

Mestre Biquinho, Jim Fitzgerald, Carlinhos Pandeiro de Oura, Curtis Pierre, Boca Rum, Mark Lamson, Carlos Aceituno, Marcio de Ile Aye, Gamo de Paz, Naoyuki Sawada, Jacare, Guello, Carlos Oliveira, John Santos, Justino.

Thanks to the technicals:

Pete Nordquist, who always had fun with this project, and was majorly enthusiastic. Curtis Feist, who helped me overcome math anxiety.

Todd Barton, and Terry Longshore, for crucial insight into music.

Lynn Ackler, for DSP tutoring and such like.

Dr. Kemble Yates, he didn't make differential equations and numerical analysis easy, but he did make them understandable.

Dr. Dean Ayers, his domain knowledge greatly improved my treatment of audiology.

H.H. XIVth Dalai Lama, I think my writing style improved greatly after I read some of his books.

Clayton Press, who introduced me to *Stir it up* by Bob Marley and opened up some significant doors for my musical thinking.

Dr. Steve Bryson, whose cogent comments on the rough draft enabled me to eliminate many obscurations, obfuscations and errors, and elucidate my explanations more clearly.

Rhythm Analyzer A Technical Look at Swing Rhythm in Music

by

Kenneth Alan Lindsay

ABSTRACT

We investigate the nature of swing rhythm in music by using computer analysis techniques. Swing is not a genre of music, but rather a style of performance. The same musical piece (data) can be played in swing or straight time. The musical notes and structure would be identical in both performances, but the notes' temporal patterns have slight, significant differences between straight and swing performances. We demonstrate a technical approach for analyzing these differences, and show examples of several styles of swing, including American Swing, Brasilian Samba, and Jamaican Reggae. Compared to American swing, Brasilian swing, or *swingee* as Brasilians call it, shows significantly more complex patterns of timing variations.

Unlike much of the work in the computer industry, computer music rarely strays far from the human experience. As such, it is a useful bridge between the purely technical and the purely human, especially emotional response. In particular, we enjoy swing music because its basic nature is an expression of fun and enjoyment of life.

Table of Contents

Chapter 1. Introduction	1
1.1 Purpose and Research Strategy	1
1.1.1 Time and Frequency	1
1.2 Musical Audio Events	2
1.2.1 Note Identification	2
1.2.2 Rhythm	3
1.2.3 Related Work	4
1.2.4 Psychology and Perception	5
1.2.5 Computer Science in Music	7
1.3 Cultural Background: Swing vs. Straight Time	9
1.3.1 Notes Inegales	10
1.3.2 American, Brasilian and Other Types of Swing	11
1.3.3 Patterns of Temporal Variation	12
1.4 Information Science and DSP Techniques	14
1.4.1 Fast Fourier Transform (FFT)	15
1.4.2 Pattern Recognition	16
1.5 Structure of this Thesis Document	17
Chapter 2. Related Work	20
2.1 Onset Detection and Event Identification	20
2.2 Music Information Retrieval (MIR)	22
2.3 Swing Analysis	23
2.4 Swing and Motion	25
Chapter 3. DSP work	26
3.1 Spectra and Time Series	27
3.2 FFT and STFT	31
3.3 Windows and Filters	33

3.4 ICA (Independent Components Analysis)	34
3.5 Wavelets	35
3.6 Zero Crossings	36
3.7 Signal and Noise	38
3.8 Description of Our DSP Algorithm	39
Chapter 4. Pattern Recognition	41
4.1 Feature Vectors vs. Raw or Processed Data	41
4.2 Description of Our Pattern Recognition Techniques	42
Chapter 5. Music Samples	45
5.1 Analyzed Music Samples	47
5.2 MIDI for Straight Time	48
5.3 Detailed Analysis of Swing Samples	49
5.3.1 Fever	49
5.3.2 Graceland: "Loose" Tempo	55
5.3.3 Pandeiro	59
5.3.4 It Don't Mean a Thing if it Ain't Got that Swing	66
5.3.5 Tamborim Batida: Playing Around the Beat	70
5.3.6 Shuffle (Surdo and Afoxe)	73
5.3.7 Reggae by Bob Marley	76
5.4 Swingee Notation Music Format	83
6. Conclusions and Future Work	85
6.1 Assessment of Our Results	85
6.2 Neural Networks	86
6.3 Parsing Musical Audio into MIDI Events	87
6.4 Interactive Swingee Notation Software	87
6.5. Improvements to Fourier Analysis	87
6.6. Improvements to the Cooley-Tukey FFT	89
6.6.1 Outline of Efficiency Concerns and Opportunities	89

vii

6.6.2 Reusing Overlapping Data Windows	90
6.7 Instantaneous Frequency Techniques	91
6.8 Swingee Maker	92
Appendices	93
A1. Interviews and Other Field Work	93
A1.1 Kim Atkinson's Thoughts on 4/4, 6/8 and Other Conundra	93
A1.2 Learning an Ile Aye Caixa Batida, and the Perception of Timing	94
A1.3 California Brasil Camp	96
A2. Brasilian Music and Culture	96
A2.1 Musical Instruments and Style	97
A2.2 The Culture of Enjoying Life	97
B. Other Swing Style Music Software	98
C. Code Listing	99
C1. Example Script for Loading Musical Audio Data	99
C2. Example Matlab Function Calls	100
C3. Main Audio Processing Matlab Script	101
D. Discography	111
E. Physiology and Psychophysics of the Human Auditory System	112
E.1 Human Auditory System	112
E.2 Psychological Studies of Human Perception	128
E.3 Human Emotions and the Meaning of Music	128
Bibliography	130

viii