
Rhythm Analyzer
A Technical Look at 

Swing Rhythm 
in Music

by

KENNETH ALAN LINDSAY

A THESIS

Presented to the Department of Computer Science in partial fulfillment 

of the requirements for the degree of

Master of Science in Mathematics and Computer Science

Ashland, Oregon

June, 2006



Kenneth Alan Lindsay  ©  2006

 



APPROVAL PAGE

Rhythm Analyzer: A Technical Look at Swing Rhythm in Music

A Thesis prepared by Kenneth Alan Lindsay in partial fulfillment for the degree of 

Masters of Science in Mathematics and Computer Science.

This thesis has been approved and accepted by:

__________________________________________    ____________________

Pete Nordquist, Thesis Advisor                                                       Date

__________________________________________    ____________________

Dr. Curtis Feist, Math Advisor                                                        Date

__________________________________________    ____________________

Todd Barton, Music Advisor                                                           Date

__________________________________________    ____________________

Dr. Lynn Ackler, DSP Advisor                                                         Date

__________________________________________    ____________________

Dr. Joseph L. Graf, Dean of Sciences                                                Date

 ii



Dedication

It don’t mean a thing, if it ain’t got that swing.

-- Duke E#ington and Irving Mi#s

 iii



Acknowledgments

Thanks to my Brasilian music teachers and friends:

Jorge Alabe, who got more rhythm out of one surdo than I’d ever heard in one place in 

my life, one sunday afternoon in Oakland, years ago. Jorge also invited me down to New 

Orleans to play with Casa Samba in the Heritage Jazz Festival even though I was pretty 

much a beginner. Being onstage in New Orleans, even in the back row, is a great thrill.

Mestre Beiçola, who always brings his love of life out in his performances, and gave me 

the experience of performing with Imperatriz Leopoldinense, the Number One Escola de 

Samba in Rio de Janeiro in the millennium year 2000.

Kim Atkinson for triggering the idea about focusing on swing feeling.

Mestre Biquinho, Jim Fitzgerald, Carlinhos Pandeiro de Oura, Curtis Pierre, Boca Rum, 

Mark Lamson, Carlos Aceituno,  Marcio de Ile Aye, Gamo de Paz, Naoyuki Sawada, 

Jacare, Guello, Carlos Oliveira, John Santos, Justino.

Thanks to the technicals:

Pete Nordquist, who always had fun with this project, and was majorly enthusiastic.

Curtis Feist, who helped me overcome math anxiety.

Todd Barton, and Terry Longshore, for crucial insight into music.

Lynn Ackler, for DSP tutoring and such like.

Dr. Kemble Yates, he didn’t make differential equations and numerical analysis easy, but 

he did make them understandable.

Dr. Dean Ayers, his domain knowledge greatly improved my treatment of audiology.

H.H. XIVth Dalai Lama, I think my writing style improved greatly after I read some of 

his books.

Clayton Press, who introduced me to Stir it up by Bob Marley and opened up some sig-

nificant doors for my musical thinking.

Dr. Steve Bryson, whose cogent comments on the rough draft enabled me to eliminate 

many obscurations, obfuscations and errors, and elucidate my explanations more clearly.

 iv



Rhythm Analyzer
A Technical Look at 
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by

Kenneth Alan Lindsay

ABSTRACT

We investigate the nature of swing rhythm in music by using computer analysis 

techniques. Swing is not a genre of music, but rather a style of performance. The same 

musical piece (data) can be played in swing or straight time. The musical notes and struc-

ture would be identical in both performances, but the notes’ temporal patterns have slight, 

significant differences between straight and swing performances. We demonstrate a tech-

nical approach for analyzing these differences, and show examples of several styles of 

swing, including American Swing, Brasilian Samba, and Jamaican Reggae. Compared to 

American swing, Brasilian swing, or swingee as Brasilians call it, shows significantly 

more complex patterns of timing variations.

Unlike much of the work in the computer industry, computer music rarely strays 

far from the human experience. As such, it is a useful bridge between the purely technical 

and the purely human, especially emotional response. In particular, we enjoy swing music 

because its basic nature is an expression of fun and enjoyment of life.
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CHAPTER 1.   INTRODUCTION

1.1  Purpose and Research Strategy

The purpose of the current work is to produce useful techniques for extracting and 

recognizing certain features in music. Our primary interest is in rhythm, distinguishing 

amongst various types of percussive note events, and characterizing these feature sets for 

determining what makes some music have a swing feeling, while other music does not.

1.1.1  Time and Frequency

Sound is typically described in terms of time and frequency. The human auditory 

system, like laboratory or recording studio devices, is stimulated by vibrations of air 

molecules against some type of transducer (eardrum, microphone) which converts the air 

vibrations into another form, such as electrical signals in circuitry, or nerve impulses, 

which are both electrical and chemical in nature. The patterns in circuitry are easily ana-

lyzed using Digital Signal Processing (DSP) techniques, and this information is a useful 

framework for understanding the details that gives the swing feel to music.

Information in the time domain (e.g. input audio stream) can be converted to in-

formation in the frequency domain (pitches, or tones). An event with a one millisecond 

(1/1000 of a second) repetition rate corresponds to a frequency of one thousand cycles 

per second (1000 Hz, or 1 Khz). The range of frequencies audible to the human ear is ap-

proximately 20 Hz to 20,000 Hz (20 KHz). Much of the information of interest for music 

and speech is in the range of 100 Hz to 5000 Hz. 

A set of frequencies derived from a time domain input stream is called the spec-

trum of the input data. The time and frequency forms of information are mathematically 

equivalent, but often one form is more convenient than the other to use for a particular 
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purpose. The spectrum is closely related to how we perceive sounds. This is explored in 

chapter 4.

1.2  Musical Audio Events

Most popular music can be broadly described in terms of rhythm and pitch, which 

are encapsulated in musical events. Rhythm is the temporal relationships of musical 

events. Pitch is the simple frequency content of these events. Timbre is a complex variant 

of pitch, and is used to describe the qualities of the sound, enabling distinction between 

trumpet and piano for example, even if they play the same musical note, or pitch. 

Not all changes in music are adequately described in terms of separate events. 

Many forms of music have important features that change smoothly from one set of fre-

quencies to another, or that smoothly modulate the loudness or pitch of a note. These 

changes are often subtle and more difficult to analyze than sharp percussive events. We 

have focussed on recognizing and analyzing distinct percussive note events, but our tech-

niques can be extended for analyzing these more subtle musical patterns. We believe 

these subtle changes are highly correlated with human emotional response to music and 

consider this an important area for future research.

For the current work we recognize musical events in terms of rapid changes 

(faster than fifty milliseconds) of pitch and power level1. These changes are generally 

complex rather than simple. They are derived either from broad portions of the frequency 

spectrum, or specific subsets of correlated frequencies. 

1.2.1  Note Identification

A musical note event is characterized by a rapid power change (as short as one 

millisecond) in a set of frequencies, called onset or attack, followed by a longer period of 

mostly steady frequencies, generally called decay-sustain-release (DSR) collectively. 
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The DSR period for percussion events ranges from tens to hundreds of milliseconds. 

Onset is often associated with large changes in loudness or power of the audio signal. 

This large quick change is characteristic of most percussive note events, although there 

are exceptions, which we discuss later.

We have developed computer algorithms for extracting and identifying a variety 

of percussive note events. We visually analyze the events representing a musical sample 

in order to discern temporal relationships between notes. These temporal relationships are 

the fundamental nature of rhythm.

1.2.2  Rhythm

After several note events are identified in terms of pitch, onset time and duration, 

they can be represented as a time series and the next level of information extraction, 

rhythm, can be performed. Once we have an informational representation of the rhythm, 

we can use it to characterize the style of the music. In particular, we investigate swing vs. 

straight time. Swing rhythm is found in Jazz, Blues, and many other styles with African 

roots including Cuban, Brasilian, and Caribbean music. Straight time is typified by some 

classical European music styles. These are not the only two forms of rhythmic style. 

Many examples of music exist that have temporal variations that are not well classified as 

either swing or straight time. 

As a convenience, we refer to straight time, especially musical tablature based on 

the standard European notation, as Mozart-Bach (MB) notation or time. This is not to say 

that Mozart and Bach did not employ rhythmic variation and expressiveness in their mu-

sic, but merely that the standardization of pitch and timing notation can be traced to that 

era in European music (1700’s).

(Bengsston, 1987) presents a perspective on the features and limitations of CCMN 

(Current Common Musical Notation), which is essentially what we are calling MB nota-

tion. He observes that learning by notation rather than by experience can impede a young 
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musician’s ability to play authentically, due to the misinterpretation of the printed infor-

mation which of course is only a guide to the musical data, not to the performance.

We distinguish between rhythm which means the temporal data of a set of musical 

notes (e.g., as written in tablature), and rhythmic style which is a form of expression that 

a human performer may use when playing the musical data. Style is generally indicated 

by a linguistic comment on the musical score such as rubato or with a swing feel. This is 

a form of meta-information meaningful to an educated performer who is familiar with the 

particular comment and style. Such linguistic comments are essentially useless to some 

one who is unfamiliar with either the music style or the meaning of the comment. 

In chapter 5 we present a variation of standard MB notation that we believe is 

useful and informative for conveying the feeling of various swing styles, both to skilled 

musicians and beginners. Performance of music using variations of the temporal patterns 

as written in MB notation (1/4 notes, 1/8 notes and so on) is called rhythmic expression. 

Recently, computer algorithms have been developed that emulate the temporal variations 

as played by a human performer, i.e., swing and other rhythmic expression.

1.2.3  Related Work 

We review a number of prior works in rhythm processing and music recognition. 

We also look at psychological research on human perception of music and time. We have 

discovered that reading old material, even if it is technically weak or obsolete, can be 

useful for several reasons. First, some of our own currently cherished dogmas about what 

is important may appear absurd to future researchers similarly to how we may consider 

the work of earlier researchers to be naive or ignorant. This can help produce an under-

standing of the evolution of knowledge in a complex technical area like music analysis, 

and can also facilitate the open mind that is essential for good scientific research. 

Sometimes old insights or observations can lead to very useful ideas when put in a 

modern context. (Strawn, 1985) includes lengthy discussion about whether 12-bit encod-
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ing of audio information is adequate for reproducing high fidelity music, and questions if 

16-bit encoding is needed or a waste of compute resources. We see this as silly today, but 

it leads to the idea of analysis of compute costs for pattern recognition work, which may 

be quite practical using 12-bit audio. Moorer in (Strawn, 1985) includes very strong tech-

nical opinions based on the idea of exact frequency sets derived from Fourier Analysis, 

forgetting apparently that Fourier Analysis is merely a model for data and information, 

and should not be mistaken for the information per se. The frequency analysis strategy of 

the human ear is quite different from the results generated by Fourier Analysis, and this 

provides useful ideas for DSP and pattern recognition, like using instantaneous frequency 

metrics or nonharmonic Fourier series rather than standard Fourier series in the extraction 

of musical features. Ideas like these can lead to better quality algorithms, lower compute 

costs for similar results, or both. (Strawn, 1985) also reports that vocoder (voice encoder) 

techniques had improved substantially since the 1960’s, primarily because the newer vo-

coders use phase information from the audio, whereas the earlier vocoders did not. Simi-

larly, although our current work, and most or all of the research literature, ignores phase 

information available from spectral analysis, we believe that there is much useful poten-

tial in this discarded information. There is some evidence for believing the human ear 

takes advantage of phase information in separating and distinguishing information that 

comes from difference sources, even though they are completely blended in the input 

stream.

1.2.4  Psychology and Perception 

Music is fundamentally a human experience. Physicists and psychologists have 

studied human perception of music since the 19th century. There is evidence for an un-

derlying commonality of temporal perception in humans, and spontaneous production of 

rhythmic patterns that starts in early childhood. This work is useful in demonstrating, for 

example, that most commonly used tempos in music are within a temporal range that ex-

ists at a low level in the human perceptual apparatus, independent of music itself (Fraisse, 
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1982). Eventually this sort of research may shed light on human perception at the neuro-

logical level, working from the cognitive levels outwards toward the pattern recognition 

and data collection systems of the audio cortex. We think that percussion and rhythm 

sounds provide a simple and tractable approach to mapping the human auditory system 

from the outside in, much as flashing dots on a computer screen have proved useful for 

mapping the human visual cortex. In the 21st century, this is a practical field of research.

An important aspect of music that distinguishes it from other human symbol sys-

tems such as language, is the close connection between emotional response and the per-

ception of musical performance. While it can be reduced to symbolic notation on a page, 

the essence of music is found in expressive live performances and perception of these. 

Much modern pop music is produced using robotic sequencing software, but this music 

does not evoke the complex emotional responses from the human information system that 

music performed by human beings does. The motion picture industry has a highly devel-

oped infrastructure to support the production of music that evokes these important and 

often subconscious viewer reactions. Rhythmic expressiveness is an important aspect of 

such music, and our technical analysis of rhythm might be used to help quantify features 

that are correlated with different emotional responses.

Emotions are not generally considered a part of computer science, but of course 

they are an important part of the human information system. To this end, our work fo-

cuses on immediately practical techniques such as those that can let a computer serve as a 

technical tutor for humans to better learn, play and understand rhythmic complexities and 

subtleties, and thus better enjoy music. Music is sometimes used as part of medical ther-

apy for emotional and psychological issues. Emotional well being (or lack of it) is a multi 

billion dollar industry in the modern world, and we suggest that learning to play and ap-

preciate music better is a useful alternative to pills and therapy.
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1.2.5  Computer Science in Music

Computers are used for many purposes related to music, but we focus primarily 

on two: computer analysis of music, and computer production of music. Practical produc-

tion of music preceded detailed analysis techniques, but both are fairly mature now. We 

look at the state of the art in computer production of swing feeling in music, which is a 

feature available in some commercial software products. We present our research and re-

sults for computer analysis of music, and explore immediately practical applications to 

music production software.

The two information science techniques most commonly used for music analysis 

are DSP (digital signal processing) and pattern recognition. Various DSP techniques can 

render a stream of raw audio data (e.g., a format like CD audio, which is one or more 

channels of 16 bit integer data points sampled at 44,100 points/second) into a different 

format, such as a frequency spectrum, which is more useful for a particular purpose. We 

typically use the frequency spectrum of a music sample to identify note events from spe-

cific instruments. Pattern recognition, like DSP, is a field with many techniques. We cur-

rently use a few fairly simple pattern recognition techniques that are adequate for the cur-

rent work, and we have also investigated more advanced techniques such as neural nets 

and statistical analysis. 

The purpose of computer analysis of music can be conceptualized hierarchically. 

Starting with real world signals (musical audio data) we want to extract information, 

knowledge, and understanding about what is contained in the data. As humans we per-

form this parsing more or less automatically, but to create an information hierarchy in a 

computer we need to explicitly perform the data manipulation tasks. A typical scenario is 

that data is processed by DSP to extract information features, such as the frequencies 

found in the signal, temporal changes of power and frequency, phase relationships 

amongst the frequencies and so on. These information features are used to extract knowl-

edge about the piece of music, e.g., what is the rhythm conveyed in a sequence of beats 
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by a particular percussion instrument, what is the fundamental pitch of the note played by 

the trumpet, how do the trumpet’s overtones combine to produce the timbre or quality of 

sound (e.g. smooth and mellow, bright, punchy etc). The information features can be 

combined to generate a framework for knowledge about the music such as where are the 

main beats, what are the relationships of major and minor beats. Other researchers 

(Guoyon, Klapuri, Tzanetakis et al.) have used this sort of information to determine the 

meter, key, and time signature. Finally we can use this knowledge to answer the crucial 

question: does this piece of music swing, or is it square? Duke Ellington and other musi-

cal experts have expressed the notion that this is where the meaning resides. Meaning and 

understanding are higher level abstractions in the data, information, knowledge frame-

work. Please note that these are not intended as rigid categories, but are merely a model 

for human conceptualization of music. This fuzzy classification methodology is often 

used in information science and artificial intelligence to describe knowledge of a system 

at various levels of abstraction.

While computers have been used for music production since the 1960’s, their util-

ity for recognizing patterns in music was not very practical until the 1990’s. Some pattern 

recognition work was done in the 1970’s and 1980’s, but was limited to research labs. 

The development of digital music as a common form of distribution has led to great in-

terest in automating the recognition of musical patterns for the practical purposes of 

searching musical databases using a symbol system appropriate to the salient native ele-

ments in music, and marketing of music based on similarity metrics accessible by such 

techniques. The most prevalent use of computers in music is the machinery which trans-

forms digital data to acoustic form for listeners. In February 2006, Apple Computer cele-

brated selling one billion songs from its iTunes online music store. We report this as tan-

gential information relevant to the current work, since people listening to music is what 

drives the expanding computer music market in all its forms.
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1.3  Cultural Background: Swing vs. Straight Time

Many musicians, when asked about swing in music, will initially indicate that it is 

a feeling and follow this by a more technical detail such as “triplet eighth notes”2 or “six 

against four rhythm”3 or “there are as many kinds of swing as there are drummers”4 and 

so forth. The underlying similarity is that swing music produces a different physical and 

emotional response in many people than do straight time performances. Swing is a desir-

able feature in music, indicated by the popularity of this style in a wide variety of musical 

genres during the 20th century. (Gabrielsson, 2000) reports that in his research listeners 

prefer music which has rhythmic expressiveness such as swing, and that they often react 

negatively to rhythms with completely uniform timing.

We use a human rather than technical specification for swing: it is a property of 

musical performance that induces a more or less energetic rhythmic motion in listeners. 

This can be foot tapping, dancing, bouncing or swaying while seated or standing, or other 

participatory behavior. Both computer science and psychology researchers commonly use 

such a metric to define swing. We believe that this effect is an ancient piece of the human 

condition, and may predate the emergence of hominids. Geese for example, synchronize 

their wing flapping when flying in formation, as do horses running in an orderly herd (not 

a stampede). These can easily be analyzed in terms of system optimization. These syn-

chronization effects, sometimes called entrainment, are similar to a group of musicians 

synchronizing to a leader, such as the drum master in Brasilian batucada.5 

Another good metric for testing if a music sample swings is to make an audio 

loop of a short section of the piece and play the loop endlessly in a player like Quicktime. 

If listening to the loop becomes tedious, or begins to sound mechanical or repetitive after 
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only a few repetitions, then it probably doesn’t swing much. We found that we could lis-

ten to many of the analyzed loops (which have a good swing feeling) repeatedly and they 

did not become tiresome. We did not conduct any extensive survey of many listeners as a 

psychology researcher might do, but we believe this observation about tedium vs interest 

is well contained in the mainstream of music research (Gabrielsson, 2000).

Having a working definition of swing, we now ask the question, where does swing 

come from? Listening to the timing of a horse canter or human walking gives a good per-

ceptual insight into swing: it is rooted in motion itself. Being found in animal motion 

other than human leads to the conclusion that swing predates language. A recording of 

my dog running shows strong resemblance to Brasilian pandeiro rhythm. Sounds gener-

ated by the motion of a vehicle such as a streetcar or railroad show how synchronized 

polyrhythms emerge as a natural result of the bouncing of the vehicle, and the asymmet-

ric nature of the patterns suggests an origin of the swing style. These vehicles can be re-

garded as information systems, as surely as a database server is. Mathematical modeling 

of such dynamical systems is explored in chapter 6. 

As modern music came to be dominated by sequencers and robotic rhythms like 

house or rave music, young listeners have not learned about temporal variation in the way  

that someone like Louis Armstrong may have learned it, riding on the New Orleans 

streetcars with their rhythmic but imprecise clackety sounds. This is a cultural loss, and 

our work shows how computers can be used to ameliorate this deficiency. We can provide 

technical feedback about the temporal patterns of swing. Mathematical models can gen-

erate timing variations for rhythmic modification in music production. These can be used 

by both music teachers and students to facilitate learning about swing. 

1.3.1  Notes Inegales

European music has had temporal variations in music performance for many cen-

turies. A style from the 17th and 18th centuries was called Notes Inegales, meaning une-

! 10



qual notes (i.e. note timings) in French. This belongs to the general category of rhythmic 

expressiveness in music. It is not clear whether the influence of this style had any direct 

effect on the development of modern swing such as American Jazz and Blues. Brasil had 

a strong influx of European music in the early 19th century because the Portuguese Em-

peror and his Court moved to Brasil when Napoleon invaded Portugal6. Certainly one can 

find strong influences from the European tradition that came down in Brasilian folk and 

formal music traditions. The main influences in Brasilian music are rooted in the African 

traditions, but there is also blending between European and African styles.

1.3.2  American, Brasilian and Other Types of Swing

Traditional American Swing is generally quick tempo and energetic, but we use a 

broader definition to easily include Samba, Reggae and other styles: swing is that quality 

in rhythmic performance that causes people to move with the music, whether consciously  

or unconsciously. The motivation is not to try to precisely categorize musical style, but 

rather to lay a foundation for finding similarities between music from different cultures, 

so a listener of one type of swing might find and enjoy other types, e.g., when searching a 

music database using a swing criterion. There is also the important phenomenon of syn-

cretism of different cultures or traditions which synthesizes a new style by combining 

aspects of two or more extant styles. Samba-Reggae, Soukous and Hi-Life are popular 

styles that have evolved from combinations of other forms. We expect much new devel-

opment of this sort of music in the 21st century as global travel and internet access 

broadens exposure to other cultures. Our work is useful for documenting similarities and 

differences between various types of swing style.

The swing ratio is a measure of slight but consistent time differences between 

pairs of successive “evenly” spaced note events as written in tablature. Use of this term 

goes back at least to (Cholakis, 1995), and has been investigated by (Anders & Sund-

! 11
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strom, 1999), (Anders & Sundstrom, 2002) and (Birch, 2003). The ratio is obtained for a 

particular musical sample by statistical analysis of the patterns of “long” to “short” notes. 

This simple concept is very useful for analyzing American Swing and Jazz.

For example, given a drum score with a series of 1/8th notes on the cymbal, rather 

than play all notes evenly, a drummer might interpret the score by playing a short-long-

short-long  timing pattern, usually associated with an accent of the same count, e.g., all 

long notes have accents. A similar modification can be played inside a triplet pattern, as 

in the Blues. By crowding the downbeat and backbeat (typically the 1 or 3 of a 4 count 

measure) with a shorter note, or leaning away from the beat rather than into it, musicians 

can change the perceptual feel of a piece from how it would sound and feel if the rhythm 

was played evenly. We note that swing is also created by sources other than drums. Louis 

Armstrong and Benny Goodman express swing very clearly in their horn parts, as does 

Duke Ellington in his piano. Some research has been done into the swing that is created 

by the Gestaltic7 performance of a group of musicians, called ensemble swing. Ensemble 

swing has been investigated by (Friberg & Sundstrom, 2002). 

We have observed that the dynamics of an instrument’s notes, especially the surdo 

in Brasilian music, contribute to swing by the timing of changes in loudness and timbre 

that would not be classified as note events, but rather are temporal elements inside a sin-

gle note event. We have looked most closely at Brasilian swing, or swingee (swing-ghee). 

We consistently find that swingee is substantially more temporally complex than can be 

expressed with a simple swing ratio, and we document some typical details in chapter 5. 

1.3.3  Patterns of Temporal Variation

It is incorrect to regard swing time as less precise than straight time. We will show 

examples by Ray Charles, Paul Simon and others that demonstrate several aspects of the 
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precision (or looseness) of swing feeling. In traditional music lessons, students are ad-

monished to play the notes in precise clockwork manner, in time with the metronome. 

This exactness usually entails counting to four using identical time differences. Swing 

music has an exact framework of this sort for defining the large scale structure of the 

rhythm. However the notes between the foundational downbeats will often occur at times 

other than the canonical quarter note locations. Classic American Swing and Jazz rely 

strongly on changing quarter note intervals to some form of triplets, and similarly for 

other factor of 2 subdivisions like eighth notes, sixteenth etc. In Brasilian swingee some 

notes are played at non MB locations and also on triplet subdivisions. We use the term 

triplet to describe any temporal subdivision which shows a factor of 3, typically in a 2 or 

4 beat meter. This may or may not exactly coincide with standard music notation usage.

In learning Brasilian rhythms as well as in analyzing them technically, we find it 

useful to use the metaphor of rhythmic targets to anchor the music precisely in time. We 

then look at the relationship patterns between subdivision notes and the target(s) in order 

to accurately play a rhythmic pattern in the proper style, tempo and meter, as well as 

playing the correct rhythm (data) per se. To the best of our knowledge, the concept of 

rhythmic targets is presented in this paper for the first time.

No matter how well one plays the data, if it ain’t got the swing, it don’t mean a 

thing. This is far more than just a word trick. (Hamer, 2000) mentions how the 1959 Lon-

don production of West Side Story stage play by Leonard Bernstein was stymied because 

of the difficulty of finding a drummer who could adequately play the rhythms in the in-

tended jazzy style. This was caused by deficient music reading abilities of jazz drummers, 

and the inability of classically trained drummers to play the score correctly. Although the 

classical drummers could read the score perfectly well, they did not know how to play the 

rhythms in a swing style.
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The classic swing riff might be described by a verbal pattern like 

tzzzhhhh, tch-ta-tzzzhhhh, tch-ta-tzzzhhhh, tch-ta-tzzzhhhh, tch-ta-tzzzhhhh, ... 

where bold font is the accented downbeat, and the time lapse between between elements 

of the pattern is not the same for all note events. In fact, this is the hi-hat cymbal rhythm 

in Duke Ellington’s It Don’t Mean a Thing if it Ain’t Got That Swing. Most people who 

have listened to much American music have heard rhythmic patterns like this, and we 

don’t render it in musical tablature because the point here is for you, the reader, to re-

member what this rhythm sounds and feels like. We intend this as a transmission of non 

symbolic information. If written in MB notation, the beats would indicate that the meter 

is in 4/4 time, but the feel of the rhythm as played includes a triplet timing, especially 

between the pickup beat (penultimate) and the accented (final, bolded) beat in each repe-

tition of the pattern. Even though the rhythm has a triplet feel, it has no similarity to 3/4 

time signature music like waltz, or 12/8 blues with their foundational count of 3. Accu-

rately mapping these timing variations to clear temporal locations in the music is the es-

sence of our research to characterize the swing feel.

Swing also appears in certain kinds of dance. Tap dancing clearly distinguishes 

between straight and swing rhythm. Most tap dance music is in either 4/4 or 2/4 time. 

Straight tapping is done on the canonical MB beats corresponding to quarter note type 

subdivision, including very fast 1/6th and 1/32nd notes. Swung beats in tap are counted 

with a subdivision of 3 inside the 2 or 4 meter, e.g.uh one and, uh two and, uh ... .8 

1.4  Information Science and DSP Techniques

The main branches of information science that are useful in this work are signal 

processing (DSP) and pattern recognition. We use DSP techniques to transform audio 

data into a form where temporal and spectral features are more accessible. Using spectral 
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information we extract the note events together with their timing information. Timing in-

formation is the basis for recognizing swing, and for classifying rhythmic patterns.

The computer music research literature mentions using many DSP techniques in-

cluding fast Fourier transform (FFT), short time Fourier transform (STFT, a variation of 

FFT), wavelets, zero crossings, frequency filtering, sub-band processing, principle and 

independent components analysis (PCA and ICA), and various statistical methods. We 

have primarily investigated wavelets, zero crossings and STFT. We find STFT to be the 

most practical for our work. Filtering and sub-band processing look quite promising and 

practical, but time limits prevented us from investigating them in depth.

The STFT produces a spectrogram that is a visual guide to the moment by mo-

ment changes in frequency content of the audio sample. The length of the FFT is crucial 

for producing waveforms that are easily parsed for note events. The FFT acts as a kind of 

smoothing filter for the complex and rapid changes in the audio input stream. Longer 

FFTs smooth more, and short ones smooth less. We find that short FFTs (less than 1024 

samples) are generally not useful because the waveforms generated from these sequences 

are not smooth enough to reliably recognize note events. This is similar to the problem of 

looking directly at the waveform of the raw audio signal and trying to recognize patterns: 

there is too much activity in the waveform. Detecting note events is less a problem for 

clearly separated individual events, but for most music, several instruments are contribut-

ing to the audio signal at any particular time. Separating these mixed sources requires 

specialized techniques which we do not currently use, as well as high resolution of the 

time and frequency data. We use fairly high resolution in both time (1 to 10 milliseconds) 

and frequency (10 to 50 Hz).

1.4.1  Fast Fourier Transform (FFT)

Fourier analysis is a mathematical technique that transforms raw audio data in the 

time domain to a set of frequencies in the audio spectrum, or frequency domain. The 
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frequency domain form of the information is very practical for our work. In DSP, the 

Cooley-Tukey FFT algorithm is a commonly used algorithm that efficiently computes the 

spectrum of the input data. The FFT approximates the theoretical resolution of a continu-

ous Fourier transform. The FFT is several orders of magnitude faster than the continuous 

transform, and also much faster than other discrete Fourier transforms. The primary trick 

of the Cooley-Tukey algorithm is to take advantage of certain symmetries in the Fourier 

transform. The data in the time domain is multiplied by complex exponential functions 

(essentially, sines and cosines of different frequencies) as part of the Fourier transform. 

The complex exponential functions can be composed by using other complex exponen-

tials of different frequencies, much the same way that the number 1/4 can be factored as 

1/2 x 1/2. By organizing these factorizations properly and re-using some of the exponen-

tials many times rather than recomputing them each time they are needed, the compute 

cost of the FFT algorithm is greatly reduced. (Brigham, 1974 ; Elliot & Rao, 1982)

1.4.2  Pattern Recognition

We use the spectra extracted by DSP to identify different musical instruments by 

their tonal (frequency) content. The general strategy is to extract short, simple features 

from large, complex data sets. These time/frequency features are good for identifying a 

note event, such as an increase of power level in a frequency range during a time interval. 

This is quite useful for identification of percussion and drums. To recognize these pat-

terns, we mostly use thresholding techniques, based on the spectral power density curves, 

which are plots of power vs time in a well chosen frequency range. We also use the first 

and second derivatives of these waveforms. These techniques are very practical but have 

limitations, especially for complex music samples such as several instruments playing at 

once, or melodic instruments with complex spectra. For these more challenging musical 

samples, we plan to use neural net approaches in the next stage of this work, since they 

are computationally efficient pattern recognizers with great adaptability. 
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1.5  Structure of this Thesis Document

Our work in computer music analysis has been somewhat broad ranging rather 

than tightly focussed on a specific narrow topic. (Plomp, 2002) has recommended that 

researchers not become mired in technical details to such extent that they risk seeing only 

trees and not the forest. The details are important of course, but so is the big picture. We 

present information about both small scale and large scale views of the complex topic of 

human perception of music, and the associated computer analysis of the musical data.

For readers who have limited time to spend or who are not keenly interested in 

excessive technical details about Information Science applied to computer music analy-

sis, we recommend reading section 3.1 first which is a practical introduction to our tech-

nical approach, and then skipping directly to chapter 5 which presents the main body of 

our results. After this exposure, the reader may be interested in looking more closely at 

the technical details of signal processing and pattern recognition. The appendices on Bra-

silian music and the psychophysics of human hearing may also be of general interest.

In chapter 2 we survey some of the research in the field of computer analysis and 

recognition of music, especially swing research. We note that one of the principle differ-

ences between our work and all other research we have read is that we focus exclusively 

on music as a set of distinct events, whereas most or all of other research takes a statisti-

cal approach to music analysis. We believe strongly that analyzing musical events indi-

vidually rather than in toto is a very important paradigm because this is the primary way 

that humans produce and consume music. Statistical and gestaltic analysis also has useful 

application in understanding music, but we do not work much with this paradigm. We 

also note the connection between swing rhythm and bodily motion which has been inves-

tigated by many researchers including (Gabrielsson, 1987) and (Waadeland, 2004).

Chapter 3 describes the variety of DSP techniques we have investigated, and in 

particular includes detailed descriptions of our FFT work.
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In chapter 4 we describe our pattern recognition techniques which are useful but 

not particularly sophisticated. We also survey some pattern recognition techniques used 

by other researchers in the computer music analysis field.

Chapter 5 presents the main body of our original work, which is detailed analysis 

of several specific examples of different genres of music. We present results that use a 

much finer grained model of time than do most researchers in this field. We have found 

strong evidence that temporal granularity should be no more than 5 to 10 milliseconds for 

adequate understanding of critical details of rhythmic timing. Most other researchers use 

10 to 20 milliseconds as the lower limit of their temporal subdivision. In particular, we 

present evidence that a highly experienced musician such as Ray Charles has temporal 

perception which has less than 5 millisecond granularity. We also present evidence that 

ensemble swing depends at least in part on interactions between musicians with the abil-

ity to perceive and manipulate time differences in this range of 5 to 15 milliseconds. We 

also present examples of alternative musical notation which gives a quantitative guide to 

playing swing rhythms authentically, and a technique for automated generation of swing 

timing variations.

In chapter 6 we present ideas for closely related future work, including some of 

the deficiencies we have found in Fourier analysis. 

In the appendices we present some peripheral material which is germane to our 

broad view that parsing musical information should not be restricted to a purely computer 

data processing model. This includes observations about our own experience learning and 

playing music, information from professional musicians, the code for our algorithm, a 

discography of the music we have investigated, some information about Brasilian culture 

focusing on music and dance, and a brief description of some of the standard knowledge 

of the workings of the human auditory perceptual system. 
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In appendix E, we focus on the front-end parts of the hearing system such as the 

ear and cochlea because these are directly analogous to DSP extraction of information 

from digital audio data. We note that there are several parallel mechanisms for transform-

ing sound vibrations into the neural patterns which enter the human brain and that even-

tually become our conscious perception of sound events. We make special note of the 

fundamental nonlinear qualities of the human audio data acquisition system, in contrast 

to analysis using computers which is predominantly based in linear mathematics. We also 

consider human factors related to music perception. Psychology research has produced a 

large body of knowledge about intrinsic properties of the human mind and its natural in-

clination towards producing rhythmic patterns. The human feelings and knowledge trig-

gered by music are also very interesting but we do not pursue them deeply, deferring to 

the vast literature on neuroscience which is beyond the scope of this thesis. The connec-

tion between music and human emotion has been noted and investigated in both psycho-

logical and musicological literature. We find the emotional aspect quite interesting, and 

include some opinions based on our experiences performing and listening to music, but 

not as part of the main thrust of the current work.
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CHAPTER 2.   RELATED WORK

Computers have been used for music and audio recognition since the 1960’s, but 

until the 1990’s cost and performance issues limited widespread application. In the mid-

dle 1980’s, researchers started to use computers for extraction of musical patterns 

(Strawn, 1985). (Goto, 1994) implemented a system that could recognize basic beats in 

some simple music. This primarily consisted of picking out the boom-chuck! beat of pop 

music. The system ran on a supercomputer which at the time meant 64 300 MHz SPARC 

CPUs. Pattern recognition used traditional AI techniques (agents and symbolic modeling) 

applied to music which was preprocessed by simple DSP techniques. The system did not 

run in real time, despite the substantial compute power available, and was neither very 

robust nor accurate. 

The rise of the Internet generated substantial interest in automated classification 

of musical genres. Initially the work was motivated by intellectual concerns, but the pos-

sibility of practical commercial results quickly gave rise to the idea of Music Information 

Retrieval (MIR). It was hoped that MIR could be used to help listeners browse audio da-

tabases in a practical manner, i.e., to help listeners find new music they like and so en-

courage them to purchase this music. Several conferences (ISMIR, DAFX, EUROSIP, 

AES, ASA, ACM Multimedia) have arisen in this field, but commercially robust systems 

remain elusive.

2.1  Onset Detection and Event Identification

The extraction of useful patterns from music generally uses one or more of three 

approaches: characterization of the sound quality (timbre), detection of note events, and 

identification of patterns based on temporal and tonal qualities. These techniques are 

most useful for rhythmic music passages, and basically ignore the more subtle problem of 
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detecting and classifying smooth changes in music such as breath modulation in voice or 

wind instruments, timbre changes, continuous changes in frequency and/or loudness 

changes of a protracted sound event complex. There are several reasons for focusing on 

the simpler tasks of extracting percussive type events. The primary reason in our experi-

ence stems from the problem of resolution, primarily in frequency, but also temporal 

resolution in some cases. To distinguish frequencies more precisely a longer FFT is 

needed. This involves a tradeoff with time resolution. We explore some ideas for improv-

ing this situation in chapter 6. 

A technically better solution is to use optimized DSP hardware rather than DSP 

software techniques to perform the first stages of frequency extraction. In human and 

animal hearing, the cochlea performs frequency identification directly, and subsequent 

neural processing enhances the information content of the perceptual stream. Note that 

while the goal of FFT or frequency specific hardware is the same, the method of process-

ing is very different. Fourier analysis can only give a static picture of a specific set of fre-

quencies that approximate an audio sample over a specific, somewhat lengthy time inter-

val. The time frame of practical audio FFTs is from about 20 up to 200 milliseconds. 

Short FFT time frames are most useful for extracting fine timing details, but long FFTs 

are required to extract fine details in the frequency spectrum. The cochlea gives informa-

tion about the instantaneous frequency content of a signal derived from each sound wave 

cycle. The wavefronts happen rapidly, one for each cycle of the incoming waveform. The 

time frame of the wavefront can be 50 milliseconds or more, and goes down to the sub 

millisecond range, depending on how rapidly the incoming wavefronts occur. The rapid-

ity of wavefronts is determined by which frequencies dominate the incoming audio sig-

nal. We don’t know of any similar technique in DSP.

In the cochlea the shape of the wavefront gives information about the frequency 

content of the signal much more rapidly than is possible with Fourier analysis, which 

must process many milliseconds of data. We believe that this represents a fundamental 
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limitation to DSP approaches, and favor development of a MEMS (micro electro-

mechanical system) device as a kind of silicon cochlea. Such devices have been devel-

oped for high end aerospace and military applications for several decades. Recently, 

(Schwartz, et al., 1999) have constructed a VLSI chip which acts as a silicon cochlea, 

supporting the field of hearing remediation (e.g. hearing aids, implants). Only if these are 

mass produced in large scale will they become practical for consumer products, and so 

far, DSP techniques are considered adequate for many practical purposes. 

Although CD quality sound is the current standard for high fidelity commercial 

music, we note that professional recording studios already use higher quality digital 

sound formats, up to 24 bit sample depth and 192 Ksamples/sec. It is possible that adap-

tive pattern recognition or nonlinear techniques will extend the limits of DSP. In any case, 

such developments are driven by economic more than technical considerations.

2.2  Music Information Retrieval (MIR)

MIR typically focuses on statistical feature matching for tempo, meter, harmonic 

structure, musical key, chord progression and other musical metrics. Several researchers 

(Klapuri, 2004), (Tzanetakis, 2002), (Dixon, 1999) have developed techniques that ex-

tract and match such characteristics for different genres of music. These systems can dis-

tinguish classical music from Jazz or Pop, and even to a certain extent distinguish Rock 

‘n Roll from Heavy Metal and make similar gross distinctions between obviously differ-

ent genres. In some cases the classification rate is above 90%, but the Holy Grail of fully 

automated classification for many varieties of music has not yet been accomplished. 

Even if classification methods become sophisticated enough to reliably distin-

guish genres that are rhythmically, harmonically and melodically quite different, it is a 

very different and more difficult matter to distinguish between highly regarded original 

music like Miles Davis, and generic sounding “Elevator Music” copies of the same piece. 

Indeed, this can be difficult even for human listeners especially if they are inexperienced 
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in a musical style. Few people would seriously suggest using automated computer soft-

ware to generate the synopsis on the back of a book -- this is a task for people to do, and 

will remain so for quite some time. Similarly, using computers for tasks like distinguish-

ing the Afro Cuban All Stars or Emmie Lou Harris from a sappy cover of the same tune 

may remain impractical for many years. 

All this criticism being said, we believe that MIR already has interesting capabili-

ties, and this effort will soon yield practical results, letting us search for music by copy/

pasting a few audio samples into the search engine, much as we search for linguistic in-

formation in Google. However, because of the current limitations for MIR, we have cho-

sen to concentrate on other areas of music recognition technology which seem to us to be 

more immediately practical.

2.3  Swing Analysis

(Gabrielsson, 1987) presents results of a conference of research into timing varia-

tions in music, and the effects of such rhythmic expressiveness on human listeners. 

(Hamer 2000) presents a report describing technical research on the characteristics of 

swing rhythms done at the Swedish Royal Institute of Technology by Anders Friburg in 

the late 1990’s. Other research into swing has been done by a small but growing number 

of researchers. (Guoyon, 2005), includes a detailed survey of swing research, MIR, and 

other information science work in the field of music knowledge and understanding.

In all the literature we surveyed, the patterns of temporal variations in swing mu-

sic are modeled as an arithmetic ratio of “long” notes to “short” notes, called the swing 

ratio. This means that if the score presents a rhythm as a set of eighth notes for example, 

that alternating notes are played with slightly more time or less time than the score indi-

cates, in order to achieve the swing feel. Guoyon presents algorithms to make these tem-

poral modification under program control. Our research indicates quite clearly that this 

model of the swing rhythm style is overly simplified and in particular, thoroughly inade-
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quate for characterizing swingee, or Brasilian swing. We also believe the swing ratio does 

not accurately model the general situation of swing in American music either, although it 

is suitable to specify swing in many cases, e.g. the swing in Fever, by Ray Charles and 

Natalie Cole (2004) which we analyze shortly. Bear in mind that these simple cases are 

often very good pieces of music, with excellent toe tapping swing. We do not intend any 

pejorative attitude towards the swing ratio concept, but from our work we present a more 

complex model that we believe is more widely applicable.

We believe our approach is novel in that we concentrate on first principles: direct 

detailed analysis of timing variations among individual note events, rather than a statisti-

cal approach. Statistical analysis is useful to extract patterns and metrics in musical sam-

ples where these patterns conform to the statistical model, such as finding a swing ratio of 

short to long notes when the short-long pattern is played consistently and evenly -- i.e. 

swing exists only on one level of the hierarchy. The Brasilian music we’ve looked at most 

closely has patterns of temporal variations at different time scales, including between 

successive notes, between successive downbeats and offbeats and parallel temporal varia-

tions shared between notes that are not immediately adjacent. We also found that not all 

the instruments play the same type of swing pattern. We conclude that swing often exists 

at several hierarchical levels in the music, and that different instruments may swing in 

different ways, synchronized by a set of commonly shared musical targets which gener-

ally correspond to MB temporal locations. The MB targets are fixed but the notes played 

by the musicians for these temporal targets may shift slightly in time, centered around the 

fixed time locations of the MB notation. These non uniform temporal shifts determine an 

overall “loose” vs “tight” feel to the rhythm. While the temporal variations in a rhythmic 

pattern may be non uniform by one metric, they may be very consistent in the sense that 

they are repeated more or less exactly, i.e. the pattern at the next higher level of the swing 

hierarchy is a uniform and consistent pattern. American Swing can also have these quali-

ties. Graceland has a loose feel, whereas Fever is very tight. We give details in chapter 5.
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Most or all previous research has framed the problem of rhythm analysis and 

identification (including swing) strictly in terms of standard subdivisions of the meter in 

MB notation. This has produced some interesting results including the beat histogram 

which applies an FFT to data about time differences between all note events in a piece of 

music (Tzanetakis, 2002). Our approach is bottom up rather than top down, and we prefer 

to give the rhythmic patterns as much freedom as they deserve rather than forcing them to 

fit into the top down MB metrical subdivision model. 

2.4  Swing and Motion

(Waadeland, 2004), (Gabrielsson, 1987) and others have investigated the connec-

tion between motion and swing rhythm. Waadeland presents analysis of many drummers, 

comparing their body motion with the rhythms they produce. Gabrielsson presents a col-

lection of papers from the Third International Conference on Event Perception and Action 

sponsored by the Royal Swedish Music Academy, which includes a variety of research, 

opinions and conclusions about the relations between motion and rhythm. In all cases the 

connection between dynamics of bodily motion and production of swing or other rhyth-

mic expression is well established. This should come as no surprise. The basic nature of 

any dynamical system is that it is extremely difficult to achieve perfect symmetry, and 

even the most meticulously crafted mechanical systems (e.g. Swiss watches with gears 

made from jewels) have a certain amount of lopsidedness to their action. 

In Brasilian music, using this body english effect for producing swing rhythm is 

almost universal. Indeed, musicians of many varieties of music move their bodies as part 

of their musical performance, whether they are a classical string quartet or the Gospel 

Choir in a revival Church. We are actually baffled that anyone would think that there is 

not a fundamental connection between motion and rhythm, but it has taken work by nu-

merous researchers over several decades, as far back as (Seashore, 1938), for this very 

obvious effect to be accepted as a real phenomenon. 
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CHAPTER 3.   DSP WORK

We investigated several DSP techniques for this project. The most practical we 

found is the Short Time Fourier Transform (STFT). STFT performs a sequence of win-

dowed FFTs on a data set, with the next FFT starting a fixed time delta after the current 

FFT. Generally we used a Hanning window (a variation of a Gaussian bell curve, see fig-

ure 3.3), slightly shorter than the length of the FFT. A few experiments using other win-

dowing strategies suggest that this is an area that could be substantially optimized, but 

these refinements are not within the scope of this thesis. 

The time duration of most audio samples we look at is less than twenty seconds, 

which means there are several hundred thousand individual data points representing the 

audio signal. For simplicity we look at mono signals, because the rhythmic patterns we 

study can be considered as a single stream of note events. More subtle analysis of music 

should process all available sources of information: both stereo channels, comparison of 

phase information for correlated harmonics representing a single instrument, or changes 

of power level and frequencies in a sound that indicates features like tremolo or vibrato.

Wavelet processing is an interesting modern technique (1990’s) which blends time 

and frequency processing into a single framework, decomposing the signal into a metric 

space that uses the set of wavelets as basis functions. We have done lengthy work with 

wavelets, motivated by the appealing concept of performing time and frequency process-

ing together, plus the potentially high performance that wavelets deliver in some cases. 

Our investigation did not lead us to a good unified approach using wavelets, and so we 

returned to using the simpler and more straightforward FFT as our primary DSP tool.
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3.1  Spectra and Time Series

Figure 3.1 shows a spectral analysis of an audio sample that is typical of all sam-

ples passed through our algorithm. We chose it to introduce our work with spectra and 

STFTs because it clearly portrays both simple and advanced musical events that we want 

to identify. This figure shows Natalie Cole singing a chorus of Fever. Elapsed sample 

time is displayed in seconds along the lower (X ) axis (turn the page sideways) where the 

lyrics are also shown. The total time for the Fever sample is about 14.3 seconds. We 

compute several thousand FFTs on the sample in order to get a representation of how the 

spectrum changes in time. An FFT is computed at the beginning of the sample, then the 

FFT window is shifted forward in time by a small delta and another FFT is computed, 

and so on until the end of the sample. All FFTs use the same window size. In this exam-

ple the window size is 2048 data points of the original music sample (2 Ksamples). The 

time shift between FFTs is much smaller than the FFT window size. In this example we 

use 441 data points of the audio sample as our time delta. At 44,100 Ks/sec, an FFT shift 

of 441 points means 10 milliseconds resolution in the specgram. A shift of 132 points 

equals 3 milliseconds, and so on. More detailed analysis is presented in the next section. 

A 2 Ks audio sample gives an FFT spectrum of 1025 evenly spaced frequencies. 

The number of frequencies is computed as (N/2) + 1 where N is the size of the FFT win-

dow (2048). The frequencies found by the FFT are displayed on the Y axis, from 20 Hz to 

22,500 Hz which is the Nyquist frequency of the CD sampling rate. Dividing 22,500 by 

1025 gives a frequency resolution of about 22 Hz for the 2 Ks FFT. A 1 Ks FFT gives 

frequency resolution of about 44 Hz, and a 4 Ks FFT yields 11 Hz resolution. There is a 

tradeoff between resolution in the time and frequency dimensions. While this frequency 

resolution is sufficient for the current work, it is quite limiting. There are some important 

efficiency and optimization issues that we explore in the section on future work.

The somewhat regularly spaced sharp vertical red lines are primarily finger snap 

and conga events, and also include some portions of other drum sounds. The yellow tips 
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extending into the blue “sky” that are exactly evenly spaced are Ray Charles snapping his 

fingers on the back beat. Specgram colors are determined by the audio power of each 

frequency at each time point, normalized to [0,1]. Blue is low and red is high power.

In the lower third of the diagram are patterns of wavy red lines, regularly spaced 

in the vertical axis. This is the spectrum of Natalie Cole’s voice. You can visually corre-

late these frequency features with the lyrics written below. The concentration of red at the 

bottom are the frequencies generated mostly by bass drum and bass guitar. These signals 

are less well defined than a human singer or melodic instrument like a trumpet. This is 

partly a limitation of the FFT frequency resolution, partly typical of features that can be 

extracted at low frequencies and partly spectral structure of the sounds of these instru-

ments per se. Both the physics of sound waves and the physiology of the human ear limit 

the information available at these low frequencies. These physical limits are probably part 

of why the human voice uses a higher range of frequencies, 200 Hz to several thousand 

Hz, to encode the majority of speech information.

The details of the correlated frequencies of Natalie Cole’s voice are the data that 

give rise to our perception of timbre which is the quality of sound that we associate with 

identifiable audio events such as words or phonemes (speech), and musical instrument 

identification. As noted in (Dowling & Harwood, 1986) the higher frequencies (200 Hz to 

5000 Hz) encode most of the information about timbre as heard by humans. These fre-

quencies are directly perceived in the human ear by stimulation of frequency sensing 

“hair” cells in the cochlea. The frequency responses of the hairs is determined by their 

location in the cochlea, with high frequencies being sensed near the eardrum, and lower 

frequencies sensed at the far end of the cochlea. Pitch (or tone) is encoded more in the 

lower frequencies (20 Hz to 2000 Hz) which are sensed both by the frequency sensitive 

hairs as well as the beat phenomenon (see Appendix E). This is a reason why most me-

lodic information is in the middle and lower frequencies: the precision of our pitch per-

ception diminishes as the frequency goes above about 5000 Hz. Our sensitivity to higher 
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pitched sounds is not diminished -- hearing the snap of a twig makes the difference 

between the tiger having you for lunch or not. At high frequencies however, direction and 

distance are more important information than precise identification of pitch. (Dowling & 

Harwood, 1986) discuss this aspect of human hearing in some detail. They also mention, 

as does (Buser, et al. 1992), that human tone perception is not perfectly correlated with 

the measured frequency.
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Figure 3.1 Spectrogram for Natalie Cole singing the chorus of Fever
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3.2  FFT and STFT

An FFT returns an array of the frequencies contained in a musical sample during a 

particular short time slice of data. The frequencies change quickly and incessantly 

throughout any “interesting” sound. Of course there is music with very slow moving 

changes of frequency content which is also interesting, e.g. Pink Floyd, or classical Pas-

toral music. Our techniques could be applied successfully to this sort of music, but in this 

work we only investigate music with quick events. In order to generate a picture of how 

the frequency spectrum of a music sample changes in time, we apply the FFT repeatedly 

with a slight time change between successive FFTs. This is commonly referred to as 

Short Time Fourier Transform (STFT), yielding a spectrogram or, as Matlab calls it, 

specgram. The time/frequency tradeoff is very important for making an STFT useful. A 

short FFT gives coarser frequency resolution and finer time resolution. Conversely, a 

long FFT give more frequency detail, but for a sample whose frequencies are averaged 

together over a longer time, yielding a less precise view of the temporal changes. De-

pending on the frequency content of a piece of music, adjusting the frequency and time 

granularities brings the resultant specgram into clearer “focus,” in the sense of rendering 

particular details more or less clearly. These adjustments are very much like focusing a 

camera lens, but rather than focusing a spatial image, we change between looking more 

precisely at time or looking more precisely at frequency. There is a fundamental limit to 

the total precision, governed by the equivalent of the Heisenburg uncertainty principal.

The STFT approach we use performs a sequence of overlapping FFTs on the mu-

sical audio data. The FFT window size (time slice) for any particular run of the algorithm 

on a music sample is constant, e.g. a time slice of 1024, 2048 or 4096 samples of input 

data (1024 samples == 1 Kilo sample or 1 Ks). These three window sizes correspond to 

time intervals of 23, 46 and 93 milliseconds respectively, at the CD sample rate of 44,100 

samples per second. The FFTs yield a frequency resolution of 44, 22 or 11 hertz respec-

tively for 1 Ks, 2 Ks and 4 Ks lengths. We tested a few samples with 8192 length FFTs, 
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but in these cases the time span of the FFT significantly blurs the frequency details, and 

were generally not very useful. Similarly, using a 512 sample window for the FFT pro-

duces a very choppy picture of how the music sample changes in time, which makes de-

tecting note events difficult due to the numerous small spikes in the temporal waveforms 

that we generate from the STFT. 

The time slice and frequency information for a particular set of STFT parameters 

can be computed with simple algebra. For a time slice (i.e. FFT window size) of Nts data 

points, and sampling frequency Fs samples/sec, the time occupied by the FFT window Tfft 

is given by Tfft = Nts / Fs . For convenience and efficiency we use powers of 2 for the size 

of Nts , e.g. 1024 = 210 , 2048 = 211 , 4096 = 212 . In some cases we use an FFT window 

which is the sum of numbers that are powers of 2, e.g. 3072 = 211 + 210 . After performing 

the FFT, we obtain a vector of frequencies contained in the audio sample. The number of 

frequencies NF is determined by the FFT window size, counted in audio data points. The 

formula is NF = ( Nts / 2 ) + 1 , so a 2048 point FFT yields 1025 distinct frequencies. The 

specific frequencies contained in the frequency vector are integer multiples of the “fun-

damental” frequency of this particular FFT, based on the formula Ffund = 1 / Tfft , so the 

frequency set is given by F{} = { n * Ffund : n = 1, 2, 3, ... NF } .   

The time shift between FFTs is the same for each run of the algorithm. Depending 

on what temporal resolution we want, we may run a sample several times with different 

time shifts in order to find an optimal resolution for specific musical features. In some 

cases we will present results with several different time/frequency settings for the same 

music sample. Typically we used time shifts between 3 and 10 milliseconds, although we 

tested some music samples using as short as 0.5 milliseconds time granularity. 

The frequencies in the spectrum of the FFT are equally or linearly spaced: the dif-

ference between adjacent frequencies in cycles per second (Hz) is the same whether they 

are low frequencies or high frequencies. This is inherent to the design of Fourier Analy-
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sis, and we consider it a disadvantage, which we explore in chapter 6. The frequency 

spacing in the human perceptual apparatus, and also in the spacing of note pitches in mu-

sic is exponential. This means that the “distance” between adjacent notes as measured in 

Hz increases for higher frequencies and decreases for lower frequencies. Given two pairs 

of different adjacent notes on the keyboard, there are no two pairs that have the same 

frequency distance in Hz between note N-1 and N-2 compared to N-3 and N-4. For ex-

ample, the number of notes between middle C and the C above or below is the same: 

seven white keys and five black keys on a piano, i.e., twelve half steps. The frequency in 

Hz of the tone corresponding to these C notes is doubled if you go up the scale or divided 

in half if you go down. This means that the frequency spacing of the notes within each 

octave is also doubled or divided in half compared to the corresponding note one octave 

below or above the note being currently examined. In practical terms, there are too many 

frequencies measured by the FFT in the upper part of the spectrum, and not enough dif-

ferent frequencies delivered by the FFT in the lower part of the spectrum.

3.3  Windows and Filters

Windows are scaling functions used in conjunction with the FFT algorithm for the 

purpose of improving results and decreasing false artifacts in the transformed data. A 

window is typically a simple function such as a gaussian curve that modifies the current 

slice of audio data, prior to the FFT. This modification is simply a sample by sample mul-

tiplication of the audio data and the window data. This yields a data slice of the same 

length as the original data that is smoothly reduced to zero at the beginning and end of 

the slice. The main effect of this pre-processing is to reduce or remove aliasing artifacts. 

These are the result of wraparound effects in the Fourier transform when it converts the 

audio data from the time domain to the frequency domain. For a detailed technical analy-

sis, see (Brigham, 1974), (Press et al., 2002), and (Hamming, 1983). Figure 3.3 shows a 

sample of audio data (green), gaussian window function (blue) and the composite (red), 
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ready for passing into the FFT. Hundreds or thousands of such slices are processed for 

every musical sample processed by the STFT. 

Filters are functions applied to incoming data which change the frequency content 

of a data sample by reducing or amplifying some range of frequencies. This may simplify 

subsequent processing of the data sample, or the filtering step can produce useful results 

directly such as measuring the power of the signal in the range of the filter. Our analysis 

of the compute costs of filter processing compared to FFT processing led us to prefer the 

FFT for the current work. The FFT approach was similar in compute cost and substan-

tially simpler in system design, saving development time. 

Figure 3.3  Audio Data, Window Function and Composite Result for FFT

3.4  ICA (Independent Components Analysis)

Independent components analysis is a recently developed technique useful for 

separating several sources of data that are mixed together in one or more data streams 
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(blind source separation or BSS). We briefly investigated this approach during work on 

note identification. Figure 3.4 shows how ICA might be used for identification of an in-

strument’s note events by compositing a short data sample of the desired instrument 

sound with a longer data stream. In essence, this is a form of autocorrelation, but one that 

matches statistical patterns rather than exact waveforms. The bold, clear vertical line of 

correlated data points and the elliptical “galaxy” indicate that the data stream included the 

sound of the pandeiro in this case. This is a promising area for future research.

(Anemüller & Gramss, 1999) used artificial neural networks in preference to ICA 

for the task of source separation, claiming fast learning (about one second) for their algo-

rithm to be able to distinguish two mixed sounds recorded in an anechoic chamber. Their 

network topology was a variation of feed forward multi-layer perception.

Figure 3.4  ICA Autocorrelation Plot Showing Identification of Pandeiro

3.5  Wavelets

Wavelet analysis decomposes a single large data set into several smaller data sets. 

These are determined, analogously to Fourier analysis, in terms of basis functions span-
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ning a function space (Hilbert or Banach space). The function space for our work is sim-

ply the waveforms of the audio samples being analyzed. Fourier analysis creates a set of 

sine and cosine waveforms and their amplitude coefficients which, when added together, 

recreate the original waveform. Similarly, wavelet analysis uses a mother wavelet and 

copies of the mother wavelet which are scaled and translated so that the resultant set of 

waveforms and their coefficients will accurately represent the original waveform.

We investigated wavelets hoping to use them as a source of features for identifica-

tion of note events contained in the data set. Wavelets could be used to identify note 

events, while also identifying the temporal location of these events in the audio stream. 

Our preliminary investigation and several papers in the computer music research field 

indicate that wavelets could be a useful analysis framework for musical note events and 

audio streams. We chose to abandon this line of research due to its technical difficulty 

and because of efficiency and scalability concerns. While an individual musical note 

event is both tractable and practical to analyze using wavelets, the extension to analyzing 

a complex audio stream with multiple instruments would entail a compute cost that we 

think scales at least as O( N2 ) or worse for a number N of different note types. In con-

trast, Fourier analysis using the FFT is an O( N log(N) ) operation. These numbers are 

merely indicative, and a complete analysis would involve considering both the number of 

steps in either the wavelet or FFT process, as well as the true compute cost of each step. 

We believe that wavelets could be used in an effective and efficient manner, but would 

require a deep knowledge of mathematics (Hilbert space etc) that is beyond our expertise.

3.6  Zero Crossings 

Zero crossings are time points where the input audio signal power level (voltage 

or sound pressure level) goes from positive to negative or vice versa. The data points 

themselves may not equal zero exactly, in which case we noted the time points of sign 

changes and plotted the time of the first data point after the sign change as a zero crossing 

! 36



event. While this technique is commonly cited in the literature, its utility was not imme-

diately obvious for our work and after a short investigation moved on to other techniques. 

Figure 3.6 shows a short sample of a pandeiro pee note event, with zero crossings 

marked as sets of blue dots along the two horizontal lines Y = ± 0.8 . The audio sample is 

plotted in cyan. We count the zero crossings and show this count by the red, black, blue 

and magenta dotted lines. The blue line shows the count in a moving 40 data point win-

dow, red uses an 80 point window, black uses a 160 point window and magenta uses a 

320 point window. The lines for the counts are normalized to fit into the same vertical 

scale as the audio waveform. Thus the lines show the relative count rather than the abso-

lute count of zero crossings in their respective windows.

Figure 3.6  Zero Crossings in a Pandeiro Note Event (close-up)
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3.7  Signal and Noise 

For the most part, the music recognition literature differentiates percussion sounds 

from melodic and other instruments. This is a reasonable distinction because harmoni-

cally correlated sounds such as pitched or melodic instruments are fundamentally differ-

ent from most percussion note events, which tend to have strong non harmonic features 

and characteristics. The jargon used to describe these distinctions, however, is sometimes 

misleading and should be amended in favor of more accurate language.  

While there is some discussion about the pitch qualities of percussive sounds, 

percussion and drum sounds are commonly referred to as “noise”. We believe this is es-

sentially an ignorant viewpoint. Noise is merely information that is not properly under-

stood. The canonical form of noise, white noise, is an idealized gaussian distribution of 

all frequencies with very useful properties. Noise as a name for some more generalized 

category of information takes on a wide variety of characteristics. In audio production, a 

low level noise signal, e.g. water or wind sounds, is commonly used as “bed” or founda-

tion for the mix of a soundtrack. This provides subliminal shaping of the listener’s per-

ception of the meaning of the soundtrack and if done skillfully, greatly enhances the be-

lievability of the soundtrack. Usually this is very skillfully mixed to the point where most 

listeners are not explicitly aware of this shaping of perception. Another common use of 

noise is in the visual effects industry for film, where libraries of “film grain” are always 

used to help blend the computer generated graphics with real world scenes. Early produc-

tions in the 1980’s and 1990’s (e.g. The Abyss or Babylon 5) would sometimes omit the 

film grain and the special effects from these early works have a very “clean” quality, 

whereas modern computer effects are blended much more skillfully with real world foot-

age. Again, most people who are not professionals in the field are rarely aware of these 

subtleties, but the presences of this noise work greatly enhances the immersive believ-

ability of the audio or visual piece. 
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While percussion sounds are complex statistical entities having far less harmonic 

correlation than melodic instruments, there is little difficulty for our human perceptual 

system to distinguish between most types of individual percussion note events, even if 

they are very similar to each other, or mixed with several other instruments’ sounds. Thus 

these sounds are not noise in the sense of being random or unpredictable. 

In our work we easily distinguish different drum note events by using a simple 

frequency based approach, without resorting to any statistics. We have also seen exam-

ples where the simple frequency summing technique fails to separate two somewhat simi-

lar sounds, such as caixa and shaker. From our survey of the research literature, we ex-

pect that refining our note identification process by using simple statistics will produce 

useful improvements with moderate effort. We discuss this a bit further in chapter 6.

3.8  Description of Our DSP Algorithm 

Our DSP algorithm (chkdot.m) performs an STFT on musical audio data, fol-

lowed by note event identification logic, and marking of timing patterns. This is imple-

mented as a Matlab script, listed in the appendix. For input data, the code takes a vector 

of digital audio data, the FFT length, and time delta for shifting to the next FFT. This 

stage produces the specgram which we then inspect to determine what frequency ranges 

to use for identifying note events. Optimizing tradeoffs between time and frequency reso-

lution often requires testing several different sets of parameters to get a truly useful 

specgram. The transformed spectral data, lists of frequencies in the spectrum and time 

points of the shifted and overlapped FFTs are retained by Matlab as script internal data 

and used in subsequent passes through the algorithm for analyzing the specgram. Since 

computing the specgram can be as much as several hundred times more compute cost 

than running a time/frequency analysis, this allows us to perform multiple analyses of a 

single useful specgram, in order to get the best results possible in minimum time. This 

design can be easily adapted for use in a GUI, which we have not yet implemented.
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Subsequent passes through chkdot use several vectors and matrices for guiding 

the DSP and note ID logic. These include a vector that specifies which frequency ranges 

to use for identifying note events (event tracks), a vector specifying how note events 

should be counted in the pulse track, a vector specifying in which secondary event tracks 

to mark events, a vector indicating how to subdivide the sample time based on the pri-

mary events detected in the pulse track, and a matrix of threshold values to use on the 

waveform in each event track. Thresholds can be specified for the waveform itself and its 

first and second derivatives. For each time slice, in each frequency range, we sum the 

values of each FFT for the frequency ranges specified in the frequency vector. This gives 

a sequence of points that represents, for each time frame, the signal’s audio power in the 

current frequency range. These points are plotted as time series that show the changing 

power levels of the audio signal in the several frequency ranges specified.

The primary pattern recognition logic, after the STFT, uses thresholds of the am-

plitude changes between the time frame data points. We use the power level of the signal, 

and the first and second derivatives implemented as first and second order difference 

equations. Figure 3.8 shows a composite of the waveforms for the standard pandeiro ba-

tida, along with the first and second derivatives of the waveform.

Figure 3.8 Pandeiro Waveform, First and Second Derivatives

! 40



CHAPTER 4.   PATTERN RECOGNITION

After an audio signal is processed by STFT, yielding a set of frequency features, 

the features need to be classified into different types of note events, and the note events 

are time stamped according to elapsed audio sample time. We use a time granularity that 

is shorter than the time duration that seems noticeable for professional musicians -- see 

the example of Ray Charles’ version of Fever in chapter 5. Our preferred temporal reso-

lution of 1 to ten milliseconds also gives fine enough resolution for detecting rapid note 

onset events (percussive events). Other researchers have used longer time granularity, but 

we believe important information is lost in the coarser resolution provided by a time step 

of ten, twenty or thirty milliseconds. Psychology research reports that human perception 

of time has even longer granularity (around 100 milliseconds) but we believe that in the 

realtime context of music, human time perception is much quicker than these reports in-

dicate. More detailed research into the perception of repetitive rhythmic events may shed 

light on this topic. (Gabrielsson, 1987) includes several papers describing such work.

4.1  Feature Vectors vs. Raw or Processed Data

A feature vector is a correlated set of information features that represents a type of 

note event. The primary features we use are power envelope waveforms for several 

frequency ranges in the STFT processed data, and the mathematical derivatives of these 

waveforms. These are sufficient to parse many types of percussion events in sparse musi-

cal samples. The literature indicates that adding statistical metrics to the feature vector 

can enhance the number of types of note events that can be reliably extracted. 

For complex note events, such as a beat that has two or more types of instrument 

notes played simultaneously (or overlapping in time), we next plan to try using sets of 

overlapping frequency ranges. The frequency set of one instrument would overlap some 
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with another instrument for the identification process. The literature commonly mentions 

using simple statistical methods to extract information about temporal patterns of changes 

for a frequency range, or differences in the distribution of the frequency power curve for 

a particular time slice. We had some initial success using this idea of overlapping 

frequency bands vs separate frequency bands to define musical event channels, but time 

constraints prevented fully developing this feature. Extending our current quite practical 

frequency approach by using overlapping bands is appealing both for the short develop-

ment time and low compute costs. We believe we could expand our vocabulary of easily 

recognized note events using low compute cost techniques for simple separation of simul-

taneous note events. A more complex audio mix would require advanced techniques.

4.2  Description of Our Pattern Recognition Techniques

After the STFT data set is generated, we select frequency bands (sub-bands) that 

are visually correlated with note events which we can hear when playing the audio sam-

ple. We first look for a pulse rhythm: a relatively simple and regular pattern which lays 

down the large scale metrical structure of the rhythm. Two principle pulse keepers in Bra-

silian music are the pandeiro and surdo, which parallel the role of the bass drum or bass 

guitar in American Jazz, Blues etc. In Reggae, the kip which is usually played on electric 

guitar performs the role of musical pulse. The role of all of these instruments is to create 

a heartbeat in the music that the other instruments use as an anchor for their more com-

plex rhythms. The pulse events are usually easy to extract by summing low frequencies in 

the STFT, typically 500 Hz or less. In some cases there are complexities which make it 

difficult to use the low frequency heartbeat as a pulse track. Fever falls into this category 

because the drums and bass guitar do not play a simple rhythm and are not clearly ex-

tracted using our frequency summing technique, due to the coarse low frequency resolu-

tion delivered by the FFT.. The human ear easily discriminates sounds in this frequency 

range because its frequency resolution is better than 1 Hz in this region. For an FFT to 

achieve this resolution, a time interval of 1.0 second or more would be needed. Such an 
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FFT would be largely useless for extracting temporal information about note events. Our 

experiments in adjusting the FFT parameters show that longer FFTs also tend to blur the 

frequency information as well as the time information. 

To extract the rhythmic features for Fever we used a different track for the pulse 

track, in this case, Ray Charles’ finger snaps. Because the finger snap is on the backbeat 

rather than the downbeat, we added logic that a negative index for the pulse band means 

to chose that pulse band number, but to use it as a backbeat rather than a downbeat. This 

technique worked quite well and we also applied it to Stir it up and Could you be loved? 

by Bob Marley.

After deciding which frequencies to use for sub-band summations, we add the 

values of data points for each spectral sub-band at each point in time for the entire time 

interval of the musical sample We normalize these sums to the [0, 1] interval for ease in 

processing and plotting. In the chkdot plots, the frequency sub-bands are stacked verti-

cally from low frequencies to high frequencies, as determined by the frequency vector 

input parameter. The top band in the plot is the sum of all sub-bands, i.e. the total power 

in the signal. 

The set of time series plots thus created corresponds to the power envelopes of the 

music sample in the several frequency sub-bands, one point for each FFT time slice. The 

amplitude of these envelopes is used by our thresholding logic to detect the time location 

of the onset of a note event, its peak and initial decay from peak. We mark the note event 

with a red diamond at the peak data point. Choosing the location for the peak the way is 

reasonable but also somewhat arbitrary. Some note events are well represented this way, 

but other note event types may be ambiguous. There are also note events where the high 

frequency portion of the note onset is not exactly simultaneous with the low frequency 

part of the note sound. Some note events use the dynamics of the sound amplitude as part 

of the rhythmic pattern itself. Surdo plays many note events of this type.
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There is a small amount of stochastic uncertainty in the note event time location 

when the time series waveforms are not smooth. Short time peaks can cause our logic to 

register perturbations in the waveform as note events, which is not a desirable result. In 

these cases we first adjust the frequency and threshold parameters carefully to extract 

note events as reliably as possible. Other solutions, such as applying a smoothing filter to 

the frequency sub-band waveforms, are obvious techniques to develop but we did not 

have the time to do so for the current work.

Once the note events are suitably detected and marked, the time differences 

between events are collected into a vector of time deltas. These time deltas are used to 

determine the locations of the red diamond markers on the chkdot plots. We also create 

a secondary event plot, diffdot, which highlights the relationship between patterns of 

changes in time deltas that occur between the note events that make the rhythmic pattern. 

It is very important to be aware that on the diffdot plots, the X axis is elapsed sample 

time (as on the specgram and chkdot plots), but the Y axis is the time difference between 

successive notes in the pulse band and the secondary events bands. 
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CHAPTER 5.   MUSIC SAMPLES

We have investigated dozens of examples of music during this project. In this sec-

tion we present detailed analyses of several of these music samples, with observations 

and conclusions based on the detailed examples as well as the broader set of samples 

which are not reported in detail. The original versions of the samples all have swing feel. 

In some of the detailed studies we also look at “straightened” versions which have been 

constructed from the originals, but with note events shifted slightly to remove or reduce 

the swing feel. In many cases, the swing is clearly related to a triplet rhythm, where some 

of the notes are played on beats that are subdivided by three rather than two or four. In 

other cases, particularly the Brasilian music, the simple triplet subdivision may be pre-

sent, but there are also other subdivisions such as 5/12 and 7/24. Additionally, the Bra-

silian music often has slight differences in timing between the first and second half of a 

musical phrase, enhancing the swing feel. This style can be found in some American 

swing, such as Graceland by Paul Simon. Jazz or classic Swing tends to be rhythmically 

much tighter than songs like Graceland, and the triplets are often very exact1.

We want to be explicit about our opinion that there exist many types of swing. 

The research literature which looks at swing has mostly addressed music like American 

Jazz, and the concept of the swing ratio was developed to describe the characteristic 

shortening of some of the note events (mostly drums). As noted in the Appendix, profes-

sional musicians often classify different swing styles by which culture the music comes 

from: Cuba, USA, Brasil, etc. The swing in Reggae seems to be more enigmatic, and we 

show some results later in this chapter from our analysis of Bob Marley’s music.
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We have studied Brasilian rhythms more extensively than any other style, and 

now describe some of the details which we have discovered in this music style. This in-

formation is included to provide the reader some context about how one style of swing 

differs from another. Discussions with professional musicians makes it clear to us that 

each swing style is likely to have a collection of details such as we describe for Brasilian 

swingee. Not being experts in all music styles, we omit such details for other styles.

Generally Brasilian music does not emphasize a simple backbeat like American 

music does. Rather, an analogous construct is indicated by which side of the samba is ref-

erenced. In our experience there are two sides, and, as a drummer, one only hears about it 

if one is playing on the wrong side. This illustrates the principle of interlocking batidas, 

or ensemble swing. Each instrument plays its rhythm with its own flavor of swingee, col-

lectively anchored at a few specific MB time locations. These combine in the perform-

ance to create a quick and complex sequence of tension/resolution effects. When played 

correctly, it gives Brasilian music a very smooth feeling despite its complexity. When one 

or more player is on the wrong side, the effect is to produce a chronic tension or pull in 

the music. The sidedness is not limited to a one-two metaphor. Most batidas have two 

sides, but the length of each rhythmic repetition may not match the lengths of rhythms of 

other instruments. This produces hierarchical complexity. For example, the pandeiro 

plays a constant one-two-three-four pattern whose timing (duration, rhythmic variation) 

varies slightly from phrase to phrase. The surdo also has a one-two-three-four structure, 

but each beat of the surdo corresponds to one entire phrase of the pandeiro. If the push 

and pull between surdo and pandeiro has a consistent feel, then the two batidas mesh like 

gears in a well-oiled but somewhat worn out machine. If one rhythm pushes when the 

other pulls, the resultant rhythm will not sound as smooth. 

The rhythms of other instruments (e.g., tamborim) can be started at their canoni-

cal downbeat, or the two sides of the batida can be swapped which gives an even more 

syncopated feel but which is still smooth. The tamborim player may start the batida a 
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sixteenth note ahead of the surdo/pandeiro downbeat or, more commonly, a sixteenth note 

after the downbeat. This type of playing around the beat is sometimes called teleco-teco 

which is an onomatopoeia for the sound of the batida.2 Again, this produces a more syn-

copated feel than playing the standard tamborim rhythm, but one which still flows 

smoothly with the surdo/pandeiro. If the tamborim starts its pattern on the two, three or 

four of the pandeiro, it is still “in time” in the sense that all the 1/8 or 1/4 notes between 

the two instruments are played at common MB time anchors, but the accents and rhythm 

of the tamborim may cause a pull, with the overall feeling that something is not quite 

right. This is a subtle thing that I am only beginning to understand. I have not analyzed 

the music to this level with our algorithm but, after years of listening, understanding this 

notion has definitely found a sensible location in the information space in my head. 

Several music software applications are available that address production of 

swing rhythm. We have used two of these, and processed our straight versions of some 

music samples using the swing algorithms in the software. We present results analysing 

the original swing and straight versions. We have made artificial swing versions of some 

samples, but the analysis of these is not presented in the current paper. Some of these 

“roboswing” samples are virtually identical to real samples (if carefully crafted). Creating 

these by hand was labor intensive and relatively tedious. For real production of artificial 

swing music, good algorithms are needed. We explore this in the chapter on future work.

5.1  Analyzed Music Samples

We chose our musical samples entirely by subjective considerations. Basically we 

picked songs we like, and that we believe have a substantial swing based on our percep-

tion. We processed short sections of the songs that represent the rhythms, making seam-

less loops of the audio. The loop may not represent the full range of complexity of all the 

rhythmic patterns contained in the songs, but they clearly show the technical details that 
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give rise to swing feel. We distinguish between a high level metric, the feel of swing, and 

lower level patterns -- the particular rhythmic patterns that generate the swing feel.

In processing the audio samples for making loops, we shaved or added very short 

time sections of music to try to match the rhythm exactly as the loop jumped from the 

end of one repetition to the beginning of the next repetition. We discovered that very 

short discrepancies in timing are clearly audible, and disrupt the feeling of the rhythm. 

These errors may be as short as 5 or 10 milliseconds, but can be heard as a timing artifact, 

primarily in the pulse, each time the loop starts its repetition. The difference between 

swing and straight feel in a sample can be caused by time differences of less than 50 to 70 

milliseconds in a few note events. These timing artifacts are a very different feature from 

merely having a sound “glitch” such as a pop or click due to clumsy editing. Generally it 

is mandatory for both the beginning and end points of the loop to be at zero signal power 

level to avoid audio glitches. Avoiding a rhythmic anomaly is a question of getting the 

time length of the loop sample exactly lined up with the patterns of elapsed time in the 

music so the note events occur at consistent temporal locations. As we already pointed 

out, the human perceptual apparatus is very astute at detecting such unnatural features as 

are caused by the loop length not matching the time cycle of the rhythmic repetition.

The samples we investigate in detail are Fever performed by Ray Charles and Na-

talie Cole (2004), It Don’t Mean a Thing (if it Ain’t Got That Swing) played by Louis 

Armstrong and Duke Ellington (1962), Graceland by Paul Simon (1986), a typical pan-

deiro rhythm from Brasilian Samba, two additional Brasilian rhythms which are more 

complex than the pandeiro sample, and Stir it up by Bob Marley (1973). 

5.2  MIDI for Straight Time

MIDI (Musical Instrument Digital Interface) is a widely used protocol in com-

puter music production and research. MIDI includes specifications for communications 

between musical devices (synthesizers, drum machines, sequencers), as well as a file 
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format for note and timing information. MIDI lets a composer specify the pitch, tempo 

and meter of note events, and can connect these computer events to output devices such 

as a synthesizer that produces note sounds.

We used the MIDI capabilities in GarageBand music production software from 

Apple Computer to produce straight versions of the pandeiro rhythm. We also used Ga-

rageBand to produce artificial swing versions of the pandeiro samples.

5.3  Detailed Analysis of Swing Samples

In this section we present analysis results from our algorithm for several musical 

samples that show pertinent details of swing timing variations. We compare original sam-

ples with straightened versions of the same samples, and describe the types of details that 

are apparent in the graphs when inspected closely. Some timing information may not be 

obvious except by close-up inspection of the plots.

5.3.1 Fever

Fever is a classic R&B song with backbeat and a 2/4 or 4/4 feeling. The 2004 Ray 

Charles version preserves the original rhythmic meter, but the conga plays with an exact 

triplet subdivision style, giving a strong and very hip swing feel, despite having no ex-

plicit feeling of swing in the sense of classic American Swing. We listened to this song 

many times before it consciously occurred to us that the extreme hipness of Ray’s version 

is more than just a well played backbeat -- a richer version of rock and roll as it were. 

Well it weren’t. When we ran this sample through chkdot and looked closely, we dis-

covered that many of the conga notes are played exactly on the triplet pickups to the 

downbeat and backbeat. By exact we mean within a 3 millisecond time granularity. Other 

identified notes events are mostly on exact 1/4 subdivisions. The pulse is Ray Charles 

snapping his fingers. The timing variation of these events is less than 5 milliseconds.

To create the straight version, we edited the digital audio signal by hand to move 

as many of the conga notes as was practical, given the subtlety of the audio mix. The time 
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difference between the triplet location and the straight 1/4 note location is slightly shorter 

than 70 milliseconds. The straight version sounds good but has a distinctly clunky feel 

compared to the original. Straightening the first half was fairly easy because the music is 

sparse and there is little overlap of note events from different instruments. The second 

half was not entirely straightened because its more complex mix meant that some instru-

ments’ notes overlapped others in a way that could not be separated without creating ob-

jectionable artifacts in the sample. In addition, the drummer skids his brushes around the 

snare drum with a strong but subtle rhythm that pervades the mix, and also causes arti-

facts if edited. The editing task involved moving appropriate (swung) note events forward 

or backward in time. Some of the swing notes could not be moved because either they 

were inextricably blended with another note event, or else the temporal location which 

would have been their landing place was already occupied by a note event and putting the 

conga note at that time location would obliterate or severely distort the other note event. 

Figure 5.3.1.1  Specgram for Introduction to Fever
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Figure 5.3.1.2 Time Series Plot for Events in Original Version of Fever

Figure 5.3.1.3 Time Series Plot for Events in Straight Version of Fever
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Figure 5.3.1.4 Note Timing Chart for Events in Original Version of Fever

Figure 5.3.1.5 Note Timing Chart for Events in Straight Version of Fever
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Figure 5.3.1.6  Close-up: diffdot Pulse Events for Original Version of Fever

Variance of time deltas for Ray Charles’ finger snaps is less than 5 milliseconds.

If you look closely at figure 5.3.1.2, in the pulse track at the top, straight up from 

the 8 second mark, you will see a small double peak. Figure 5.3.1.7 shows a close-up of 

this slight performance error in the second phrase.One of these events is a finger snap, 

and the other a conga. Everywhere else in this music sample, we found exact temporal 

alignment between these two instruments, but in this case, the conga plays 30 millisec-

onds too soon. We conclude that Ray Charles either did not hear this discrepancy during 

recording (unlikely), or that he was aware of it but found it acceptable. Indeed we chal-

lenge anyone to actually perceive it by direct listening (the audio sample is posted on the 

web). We include this anomaly because it represents an important data point in the speci-

fication of lower limits to the human audio perception system. Figure 5.3.1.8 shows an 

even closer view. The small bump that is visible between the first note event (conga) and 

the larger finger snap peak is the snare drum which has a small component of its sound in 

the higher frequency range where we measure the finger snap and conga.
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Figure 5.3.1.7  Fever missed conga note

Figure 5.3.1.8  Extreme Close-up of Conga/Finger Snap Timing Anomaly

! 54



5.3.2 Graceland: “Loose” Tempo

Graceland by Paul Simon is a good example of a swing feel that mimics riding on 

a railroad. We discovered that the several instruments in the introduction bounce around 

the MB beat locations in a loose swing while staying tightly synchronized with each 

other. Figures 5.3.2.1-3 show specgrams for the 8 bar intro to Graceland. The large scale 

specgram shows the subdivision of time clearly, but the spectrum appears quite broad and 

relatively featureless from the perspective of extracting note events. Zooming in on the 

low frequencies in the second and third plots show a great amount of detail visible below 

1500 Hz. This shows how the resolution of the FFT is crucial for picking good frequency 

bands and features. The time resolution is about 10 milliseconds.

Figure 5.3.2.4 shows a ten frequency band chkdot time series plot for the Grace-

land sample. Bass drum is used as the pulse, and electric guitar is the secondary events 

channel. Figure 5.3.2.5-6 show diffdot plots of the time deltas for the pulse and guitar 

channels. Both event channels show significant variations in the timing. The pulse chan-

nel starts with greater variation, and settles into a somewhat tighter pattern by the second 

half of the sample (second 4 bar phrase). The electric guitar is much more consistent in 

timing variations. Close inspection shows approximately 50 millisecond range of time 

deltas in both event channels.

The chkdot subdivisions (green lines) show a triplet pattern. The pulse events in 

the lowest frequency band land close to the downbeat and backbeat MB lines, but drift 

slightly forward and backward in time. This gives a looser feel than the extremely tight 

swing in Fever which has every beat synchronized to less than 10 milliseconds. Looking 

at the Graceland chkdot plot, it is clear that basically every note event is played on a 

quarter beat subdivision. Ordinarily this would tend to sound somewhat square. The con-

sistent variation in the electric guitar timing seems to provide a swing feel without any 

explicit presence of triplet subdivisions.
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Figure 5.3.2.1  Specgram for Graceland

Figure 5.3.2.2  Specgram for Graceland (close-up one)
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Figure 5.3.2.3  Specgram for Graceland (close-up two)

Figure 5.3.2.4  Graceland bass drum and electric guitar events
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Figure 5.3.2.5  Graceland Note Event Time Deltas (diffdot)

Figure 5.3.2.6  Graceland Close-up of Electric Guitar Time Deltas (diffdot)
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5.3.3 Pandeiro

The pandeiro is a Brasilian hand drum very similar to the instrument called a tam-

bourine in American music. Pandeiro can and does play almost every rhythmic part in 

Samba and Pagode: surdo, caixa, tamborim (not a tambourine, see Appendix), ganza 

(shaker) and cuica in addition to a variety of rhythms mostly unique to the pandeiro.3

The basic pandeiro batida is a simple 1-2-3-4 pattern played continuously with 

slight variations denoting which phrase of a larger pattern is being played. This pandeiro 

batida is invariably taught as straight time: one-ee-and-uh played with thumb (one), fin-

gertips (ee), palm heel (and), fingertips (uh), over and over. American students generally 

have a difficult time learning to play the pandeiro. Part of this difficulty is related to pos-

ture: holding the pandeiro, Brasilian style, is as difficult as holding a violin, but with the 

stress on the left hand rather than chin and shoulder. The other difficulty, which became 

clear during the course of this research, is that most pandeiro teachers, whether Brasilian, 

American or other national origin, underemphasize the single most important insight: 

these four notes are not played with even time differences. As can be seen in the chkdot 

time series plots, the uh note is always played on the triplet pickup to the downbeat, 

rather than the straight quarter note. This timing variation gives the pandeiro batida a 

strong swing feeling. The triplet pickup to a downbeat or backbeat is a very common fea-

ture of American Swing, and also quite common in Brasilian music. In addition, the sec-

ond and third notes ( ee and and ) are played in two very odd locations in the first half of 

the phrase. Neither of these is played on either a triplet, quarter or eighth note location, 

and there are slight time variations between repetitions of the basic batida. The pattern of 

these time variations is consistent by some measure, since in the diffdot plots the pat-

tern is clearly a repeating waveform, rather than some kind of random pattern. 
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In addition to the sub-phrase temporal variations, most pandeiro players also play 

a slight timing difference between the length of the first and second phrases of the pan-

deiro batida, which enhances the lopsided swing feeling. The diffdot pulse events plot 

also shows this larger scale timing pattern. A correspondence can be imagined between 

the two diffdot patterns. This correspondence relates to making the overall composite 

pattern feel like a smooth swing, rather than pulling on the rhythm. The difficulty of de-

scribing this adequately in language reinforces the assertion that swing is an intuitive 

feeling rather than an analytical construct of counting exact subdivisions. We could ana-

lyze the timing patterns exhaustively, but it wouldn’t help play the batida correctly.

The typical explanation of all this hierarchical coupling of temporal patterns, after 

the student has become semi-competent at holding the instrument and playing the basic 

notes, is that the pandeiro teacher says “Now, play with swingee!” 

In figures 5.3.3.1-8 we show plots contrasting the original swingee version of the 

batida with a straight version generated in a MIDI file. The first two figures are 

specgrams of the spectra of the samples. The spectra are relatively the same, but the spac-

ing of the vertical bands that represent the note events are more evenly spaced in the 

straight version. The second set of plots (chkdot) show time series of the audio signal 

decomposed into three frequency sub-bands. The pulse (one notes) is shown in the bot-

tom frequency band. We detect these downbeat and offbeat notes from the strong low 

frequencies generated when the thumb hits the pandeiro skin. The other notes have the 

high frequencies of the jingles rattling. The one notes are played with two tonal variations 

to demarcate the two sides of the two bar phrase, called the open tone and the closed 

tone. Since the one notes also cause jingles to rattle, these notes show up in the frequency 

band for ee, and, uh notes. Observe how the note events in the straight version line up 

with the quarter subdivision lines. In the original swingee version, the only note event 

that is on an MB quarter note subdivision is the pulse. 
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The small amount of variation visible in the straight version is due to using hand 

edited samples that have slight artifacts, and using more than one sample version of each 

note event so the note events are not all generated by identical samples for their position 

in the batida: one, ee, and, uh. The swingee samples, played by a human musician, show 

temporal variations at several hierarchical levels of the rhythmic structure. diffdot 

shows about 5% - 8% variation in the time delta between downbeats, with a clear repeat-

ing pattern that resembles a slightly modulated sine wave. This set of time variations 

could be roughly modeled by using the swing ratio concept, if it was extended to include 

variations which are more than a simple ratio. The subdivision notes (ee, and, uh) show a 

more complex variation which is clearly beyond the swing ratio to model adequately. 

Next are the diffdot plots, which show the time difference between adjacent 

note events on the Y axis. The green vertical markers represent the series of downbeats 

and the red markers are the ee, and, uh events. Elapsed sample time is on the X axis. The 

straight version has all non-pulse notes clustered around the 1/4 subdivision line. The 

swingee version shows a repeating pattern of timing variations for both the pulse and 

non-pulse note events. While the uh note events in the chkdot plots are quite precisely 

on the triplet pickup MB markers, in the diffdot plots these are spread between the 1/3 

and 1/4 subdivision markers. This is because the chkdot markers are on the absolute MB 

time subdivisions, while the diffdot markers are relative to each other, and so the 

diffdot subdivisions depends on the timing variations in the pulse events, giving a 

broader spread of time deltas than in the chkdot plots. 

These complex time variations are typical features of swingee for all the samples 

of Brasilian music we’ve analyzed. Keep in mind that the basic pandeiro part is one of 

the simplest rhythms found in Brasilian music. The swing ratio model of timing varia-

tions is completely inadequate to describe these types of rhythms. In chapter 6, we ex-

plore an idea for generating these temporal variations using Fourier series. 
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Figure 5.3.3.1  Specgram of Swingee Pandeiro Batida

Figure 5.3.3.2  Specgram of Straight Pandeiro Batida
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Figure 5.3.3.3  Time Series Plot for Events in Swingee Pandeiro Batida

Figure 5.3.3.4 Time Series Plot for Events in Straight Pandeiro Batida
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Figure 5.3.3.5  Note Timing Chart for Events in Swingee Pandeiro Batida

Figure 5.3.3.6  Note Timing Chart for Events in Straight Pandeiro Batida
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Figure 5.3.3.7  Close-up of Events in Swingee Pandeiro Batida 

Figure 5.3.3.8  Close-up of Events in Straight Pandeiro Batida 
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5.3.4 It Don’t Mean a Thing if it Ain’t Got that Swing

Figure 5.3.4.1 is a time series plot for the beginning of Duke Ellington and Louis 

Armstrong’s 1962 performance of It Don’t Mean a Thing if it Ain’t Got that Swing. The 

upper event track shows the hi-hat cymbal sound as the drummer fades himself into the 

mix by playing slightly louder with each beat -- no overdubs or mixer board fading here. 

You can see how hi-hat note events start the phrase slightly off from the MB time loca-

tions and then home in on the exact time location of the triplet pickup to the beat. 

Figure 5.3.4.2 shows the diffdot plot. The pulse timing shows some variance, 

but the red events (hi-hat) are tightly clustered on the 1/2 and 1/3 subdivisions, with a 

third cluster midway between the 1/6 and 1/8 subdivision. Figure 5.3.4.3 shows a larger 

view. The trumpet note events are visible in frequency bands 3,4 and 5. Figures 5.3.4.4-6 

are specgrams showing both the rhythm section and Louis Armstrong’s trumpet solo.

Figure 5.3.4.1  Events for It Don’t Mean a Thing if it Ain’t Got that Swing

Hi-hat cymbal events marked in upper row, piano/bass in lower rows.
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Figure 5.3.4.2  Event Times: It Don’t Mean a Thing if it Ain’t Got that Swing

Figure 5.3.4.3  Time Series Plot Showing Rhythm and Trumpet Events
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Figure 5.3.4.4  Specgram of Intro for It Don’t Mean a Thing if it Ain’t Got that Swing

Figure 5.3.4.5 Close-up of Specgram of Intro Showing Piano and Drums
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Figure 5.3.4.6 Close-up of Specgram Showing Trumpet Note Events
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5.3.5 Tamborim Batida: Playing Around the Beat

Figure 5.3.5.1 shows slight timing variations in the performance by a tamborim 

player. We discovered these during extreme close inspection. In this sample, the pandeiro 

plays the principle beats (downbeats and offbeats) in the lower plot. The other notes in 

the pandeiro batida are not shown but are the same as in the previous analysis of the pan-

deiro batida. Note that the principle beats are not all exactly on MB subdivisions. This 

intentional and quite precise looseness is part of the swingee style. Both the tamborim 

and the pandeiro play some notes exactly on the MB subdivisions and some notes slightly 

off, generally ahead of the beat. These variations are typically between about 20 millisec-

onds and 50 milliseconds. 

In the upper plot when the tamborim starts playing, it is not at the standard begin-

ning of the batida. Instead the drummer plays a variation on a portion of the second half 

of the entire tamborim phrase, which leads into the downbeat. The downbeat is indicated 

by the green marker at time location 1700, except there is a further variation -- it is not 

the primary downbeat but the offbeat, so the tamborim is playing on the opposite side 

from the pandeiro. This is not however, the wrong side. It is very common in Brasilian 

music for some two phrase batidas to be played with the two phrases swapped. This is 

analogous to the 3-2 clave and 2-3 clave style in Cuban music. Swapping the sides gives 

a different feel, usually more syncopated if the unfamiliar variant is played.

The tamborim batida is very syncopated even when played straight. The “stan-

dard” place to start the basic tamborim batida is at note event #6 in figure 5.3.5.1 at tem-

poral location 1700, very slightly ahead of the beat. Many batidas have beats that are 

played ahead of the MB subdivision beat, and/or also slightly ahead of or behind the note 

events of other instruments. In this example, at this temporal location, the pandeiro plays 

about 30 milliseconds ahead of the MB subdivision downbeat, and the tamborim plays 

about 15 milliseconds ahead of the pandeiro. This is not accidental but is used to give a 

push to the feeling of the rhythm by both instruments. A few beats on either side of the 
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1700 point, both instruments have notes that are played exactly on an MB subdivision. 

The feeling of this pattern is quite consistently the same throughout the entire sample 

which is several minutes long.

Looking at the two sets of three evenly spaced notes starting at 1700 and 2000, 

note that the first and third beats are slightly ahead of where they would be if played ex-

actly according to some even MB subdivision, however complex the subdivision might 

be. To reiterate, these beats push the rhythm slightly and give a somewhat more energetic 

feeling to the music than if they are played “straight”. This is what we referred to previ-

ously as parallel time shift of non sequential but related note events. In this case, these 

two tamborim note events are also accented, further emphasizing the push to the rhythm 

at these two time points.  The combination of time push and accent are caused by the 

tamborim player putting a little extra “juice” into the rhythm for these note events. 

(Waadelund, 2004) has studied the relation between this type of “body english” and the 

rhythms played by drummers on drum kits. The investigation of the relation between mo-

tion and rhythm started in the early 20th century. (Seashore, 1938) and (Gabrielsson, 

1987) both include a variety of reports, insights and opinions about this phenomenon.

In our example, the tamborim plays the first beat right on top of the pandeiro on 

the “real” downbeat, instead of playing at the “standard” temporal location for the note. 

This portion of the batida starts its repetition at the ninth event location (time 2000, triplet 

pickup to downbeat), just before the main downbeat, marked by the black line at time 

2050. You can see that the first beat ordinarily is on the triplet pickup to the downbeat, 

and the next two beats are almost exactly evenly spaced on the subsequent triplet time 

points. The slight variations from playing exactly on temporal locations that correspond 

to an MB subdivision are part of the swingee style. While there is some looseness similar 

to the Graceland example, generally Brasilians play these slight temporal variations quite 

precisely, consistently and intentionally. 
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Figure 5.3.5.1  Tamborim Batida: Playing Around the Beat

Figure 5.3.5.2  Tamborim Batida: Playing Around the Beat (close up)
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5.3.6 Shuffle (Surdo and Afoxe)

We use the term shuffle to describe a wide range of swing rhythms. A shuffle has 

a temporally less exact sound than typical percussion note events. Shakers, brushes on a 

snare drum or hi-hat cymbal, caixa, afoxe, guiro are all examples of shuffle instruments. 

Single events can be identified, but overall there is a feeling of blurring and blending of 

each note event into the next. The meter of the rhythm is defined by the loudness peaks or 

other identifiable but somewhat temporally ambiguous events. Shuffle is an odd combi-

nation of vagueness and precision, difficult to describe with language. 

Note ID is more difficult for these less precise musical events, and marking the 

onset time locations precisely can be subject to interpretation of how the rhythm feels. 

The standard Brasilian ganza (shaker) rhythm usually has a noticeable snap that leads the 

downbeat, but the remaining notes are more blurry. The snap gives a precise anchor to the 

rhythm which makes the blurry parts sound well integrated to the ensemble swing, rather 

than being played carelessly. It is easy to see in the diffdot plots how the swingee and 

straight versions of this sample have quite different timing variations in both the pulse 

and secondary events tracks. Even the straight version has a substantial amount of tempo-

ral variations, similar to Graceland. 
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Figure 5.3.6.1  Time Series Plot for Swingee Shuffle Batida 

Figure 5.3.6.2  Time Series Plot for Straightened Shuffle Batida 
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Figure 5.3.6.3  Note Timing Chart for Swingee Shuffle Batida  

Figure 5.3.6.4 Note Timing Chart for Straightened Shuffle Batida 
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5.3.7 Reggae by Bob Marley

Reggae music from Jamaica is characterized by complex rhythms, many of which 

explicitly use the absence of a note event as a rhythmic anchor. In American music, note 

events on the downbeat or backbeat typically anchor the rhythm at the 1 or 3 beat of a 4 

beat measure. In Reggae, the downbeat is often not played by any instrument, and other 

canonical MB beat locations may be demarcated by silence, perhaps followed by several 

very quick drum beats in a complex rhythm which may end on the next canonical MB 

beat. Detection of rhythms which have an empty note event as an important feature of 

their pattern is a challenging task, both for a musician or a computer algorithm. In addi-

tion, the counting scheme in our algorithm was developed for more conventional 

rhythms, and is quite inadequate for satisfactory extraction of the rhythmic structure of 

Reggae. Nonetheless, we had some success and show these results in this section.

Stir it up (1973) is one of the best love songs ever written (in my opinion, and my 

fiancee’s). It begins with a very tight and clipped kip played on the backbeat of the 

rhythm by Bob Marley on the electric guitar. As the other instruments join in, a sparse 

and relatively simple sounding gestalt emerges, and the kip is revealed as a backbeat, 

whereas played by itself, it could be interpreted as the downbeat. I find it impossible not 

to dance to this tune (making it difficult to write this section sitting down).

Figure 5.3.7.1 shows the specgram for the intro to Stir it up. The six double short 

vertical red lines at the left are the kip. Later in the song this double beat is sometimes 

played as a triple or quadruple set of beats, maintaining the same tight rhythm. One out-

standing feature of the specgram for this song is the presence of the row of pyramids in 

the lower part of the figure. This is caused by the sound of the keyboard as its notes roll 

smoothly up and down in frequency. Given the large number of Biblical references in 

Bob Marley’s lyrics, I suspect he would like this revelation. Indeed, he might even claim 

that it is an intentional accident.
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The pulse and bass drum events are shown in figures 5.3.7.2 and 5.3.7.3, which 

are subdivided in thirds, even though we have not yet found any real evidence for triplets 

in this song. We made plots using other subdivisions, but the figures we present seem the 

clearest. The pulse beats are either on the MB beat location lines, or exactly between two 

of the triplet lines, indicating a very straight and tight quarter note subdivision.

Figures 5.3.7.4 and 5.3.7.5 show close-ups of the pulse, and drum break. Both are 

very exactly subdivided in a multiple of two, 1/8th or 16th notes, depending on how one 

chooses to count and subdivide a measure. Figures 5.3.7.6 and 5.3.7.7 show specgrams of 

Bob Marley singing. These are quite beyond our current analytical approach, and would 

require both finer resolution in the spectral decomposition and much more sophisticated 

pattern recognition than we now use. We include them, like the pyramids, for their pecu-

liar and somewhat mysterious beauty. Figures 5.3.7.8 shows a tempo change of the pulse.

Figure 5.3.7.1  Specgram for Intro of Stir it up

! 77



Figure 5.3.7.2  Ten Channel Events Time Series for Stir it up 

Figure 5.3.7.3  Close-up of Pulse and Drum Channels for Stir it up
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Figure 5.3.7.4  Close-up of Pulse and Drum Break for Stir it up 

Figure 5.3.7.5  Close-up of Pulse for Stir it up

! 79



Figure 5.3.7.6  Specgram of Vocal for Stir it up: “C’mon cool me down baby ...”
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Figure 5.3.7.7  Specgram of Vocal for Stir it up: “When I’m thirsty”

! 81



Figure 5.3.7.8  Tempo change in  Stir it up

Bob Marley had a very distinctive singing voice. While it might not be considered 

particularly “good” by some metrics, it is a very expressive and soulful voice. The 

specgrams showing the singing of lyrics show a great deal more complexity and subtlety 

than the vocals shown earlier for Natalie Cole singing Fever. My opinion is that the inter-

twining waveforms visible in the specgram are the technical correlate of the emotional 

expressiveness that is clear when listening to Bob Marley singing. The actual data and 

information representations presented here are at the limits of what I could achieve with 

standard Fourier spectral analysis at this time. Techniques that allow finer resolution in 

the time and frequency domains are needed in order to produce clearer representations of 

the subtleties of the singing voice. We are addressing some of these technical issues in a 

separate project, “Optimization strategies for FFT use in musical audio analysis.”
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5.4  Swingee Notation Music Format

We have devised a novel form of notation that is intended to be a more informa-

tive form than standard MB notation. The idea is to make a simple visual rendering, in 

the context of standard notation, of the types of timing details we have investigated. Fig-

ures 5.4.1 and 5.4.2 show this idea using tablature for a pandeiro batida as an example. 

The pandeiro batida is rendered as straight quarter notes, which is how it is usually 

taught. Note events which should be played ahead of the MB beat are shown with a red 

leading edge. The amount of red indicates the amount of temporal variation from the MB 

beat. Since the triplet pickup to a downbeat, backbeat or offbeat (all canonical MB beat 

locations) is an important special case, we indicate a perfect triplet subdivision by includ-

ing a “3” as a footnote to the note glyph in the tablature. Additionally, we color the triplet 

blue to indicate its special status.

Figure 5.4.1  Standard Notation for Pandeiro Batida
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Figure 5.4.2  Swingee Notation for Pandeiro Batida
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6.   CONCLUSIONS AND FUTURE WORK

6.1  Assessment of Our Results

Prior technical research into swing style in music has shown that a major feature 

of swing is in variations of the timing between notes which are evenly spaced as written 

in a musical score. We entered into our research work wholly ignorant of such results, but 

with a reasonable conviction that timing variations are an important element in swing, 

based on our experience playing and listening to this type of music. Our results indicate 

that swing can result by shifting certain note timing as little as 50 milliseconds, typically 

note events that precede a major MB beat location such as a downbeat or backbeat. Bra-

silian swingee is a more complex style than American Swing, and timing differences as 

short as 10 to 15 milliseconds can change the feel of the music in ways that are percepti-

ble even if not easily analyzed by a purely perceptual approach. Our algorithms allow 

easy scrutiny of the details of such timing variations.

An important model of swing as presented by Friburg, Gouyon and others is the 

swing ratio, which is a simple arithmetic ratio of the short and long time intervals 

between the swung notes. While this is an important metaphor, in our research we show it  

is not adequate to describe Brasilian swing, and in our musical experience we are led to 

believe that this deficiency is generally valid for rhythms that are not rooted in European 

classical music and the Mozart-Bach notation of straight time. We make a distinction, as 

do many researchers, between swing and the more general case of rhythmic expression.

Rhythmic expression can be found in all human music, and is largely absent from 

sequencer generated computer music. This more general form of expression, like swing, 

also derives from patterns of temporal variation in playing a piece of music, rather than 

playing the music as it is literally written in the score. The temporal variations can be de-
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scribed by motion models: vehicles, animal and human circumambulation, ebb and flow 

of ocean tides (in certain types of classical music, see (Gabrielsson, 1987)) and other real 

world motion models. In a later section we explore the idea of using mathematical mod-

els of dynamical systems to generate timing patterns suitable for algorithmic generation 

of swing rhythms, and possibly also for more general cases of rhythmic expression. Like 

rich, complex audio tones and timbres, these complex timing patterns somehow reach 

into the human mind and connect with the non-symbolic emotional elements of the hu-

man psyche. We believe that music is a very useful data source for technical research into 

the neuro-physiology of emotion. While copious research has been done into the emo-

tional aspect of music, we have not investigated this topic formally. As musicians, we 

state our opinions about music and emotion drawn from our own experience. 

The complexity of rhythms with African roots is well known to musicians. Much 

of Brasilian, Cuban and Caribbean music is strongly influenced by African rhythms. We 

have given examples of complex timing variations that exist in the performance of even 

the simplest of Brasilian rhythms. The relationships among more than two rhythms 

played together give rise to much more complex systems of temporal variations, often 

called ensemble swing. These are known to musicians and perceivable by a trained atten-

tive listener, although our pattern recognition techniques are not adequate for good tech-

nical analysis of such musical samples at this time. More sophisticated note identification 

algorithms would allow us to extend our approach to these more complex examples. 

6.2  Neural Networks

Computational neural networks are a software approach to pattern recognition 

which have been successfully used for note identification in music (Kahn et al., 2004). 

The two neural net metaphors we plan to investigate for note identification are adaptive 

learning, and classification based on feature vectors. Adaptive learning in multi-layer 

feedforward perceptron networks (the “classic” neural net) would be a practical approach 

to automated identification of different types of note events. Its development is a time 
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consuming process that can give good results, once the system is properly trained, and is 

extensible to new data examples (note events). Feature vector classification is less flexi-

ble but quicker to develop, and for percussion music probably quite practical. In feature 

vector classification the identification of useful features, and collecting these into a priori 

sets of vectors, is done by the human researcher. This human activity substitutes for the 

computational learning process of adaptive neural nets. The feature vectors are used as 

coordinates into a multi-dimensional state space, and clusters of data points in this state 

space represent different types of notes. Learning vector quantization (LVQ) and self or-

ganizing maps (SOM) are the two classification approaches we believe would be most 

useful for extending our pattern recognition in the area of note identification. For model-

ing temporal aspects of rhythm, Hebbian learning and recurrent neural nets look like two 

useful techniques to explore. (Haykin, 2002)

6.3  Parsing Musical Audio into MIDI Events

The techniques we have presented are suitable for generating MIDI event files 

based on the extracted note events correlated with their temporal locations in the musical 

audio stream. We plan to develop this as part of the strategy to move this research out of 

the laboratory and into practical user application software.

6.4  Interactive Swingee Notation Software

Swingee notation (section 5.4) could be implemented as interactive software, and 

used to augment the notation features in music production applications like GarageBand 

or Logic. If the analysis and identification techniques which we have implemented in 

Matlab could run in realtime (which is quite likely), then this could be combined with 

swingee notation to produce a software tutor that can help a student learn to play a par-

ticular style of swing, given audio samples of the rhythm.

6.5. Improvements to Fourier Analysis

Fourier Analysis has been used for about 200 years to translate temporal data into 

spectral data. Since its popularization by (Cooley & Tukey, 1965), the Fast Fourier Trans-
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form (FFT) has proven to be a practical algorithm for general signal processing. How-

ever, the FFT and Fourier Analysis have a substantial shortcoming: they both decompose 

a time based signal into equally spaced frequencies in the spectrum. As can be seen in the 

specgrams in chapter 5, most of the useful information in an audio signal is in the fre-

quencies less than about 5000 Hz, or even lower. The higher frequencies are greatly over 

specified by the data in the frequency vector which is the result of the FFT. This result 

can be thought of as a mathematical vector that determines a location in a high dimen-

sional space. Our examples using 2048 sample length FFTs correspond to a 1025 dimen-

sional space. At most only about 20% of this information is truly useful, and in the sam-

ples we analyzed, a much smaller number of frequencies could be used to represent the 

spectrum above 5000 Hz than the approximately 800 that the FFT produces.

Compare and contrast the linearly spaced FFT and Fourier Series with the expo-

nential nature of the frequency distribution analysis that is performed by the human coch-

lea. Both give useful amounts of information from the same data stream, but the cochlea 

has much finer frequency discrimination in the lower frequency part of the spectrum than 

does the FFT. The frequency relationships of tones which we hear are well described by 

the octave system of frequency spacing, at least below 5000 Hz. This octave system is 

designed with exponential spacing of the frequencies. 

There do exist alternatives to the FFT and Fourier Analysis. Wavelets are a popu-

lar technique for extracting time and frequency information from a time based data 

stream, but as we noted in chapter 3, this is a very deep mathematical subject. (Young, 

2001) presents the subject of non-harmonic Fourier Analysis, which develops the idea of 

using Fourier series that are sets of sine and cosines waves not related by integer multi-

ples (i.e., cos(x), cos(2x), cos(3x) ...), but by non-integer real or complex numbers. 

Mathematically, nonharmonic Fourier series are closely related to wavelets. The basic 

idea of the math for wavelets and nonharmonic Fourier series is to create a method to ac-

curately describe a Hilbert space of mathematical functions (i.e. audio waveforms). Both 
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wavelet analysis and nonharmonic Fourier series seek to generate sets of basis vectors 

which span the N-dimensional frequency space, just as the classical Fourier series does. 

Since there are infinitely many spanning sets of basis vectors, it seems likely that a class 

of basis vectors could be constructed that is equivalent to a Fourier series but which is 

exponentially spaced in the frequency domain. Initial discussions with my math advisors 

gave a positive view of this idea, and complete uncertainty about whether such a 

frequency analysis strategy has ever been attempted. 

Whether this alternative to standard Fourier series is practical depends on whether 

an algorithm similar to Cooley-Tukey could be devised, which takes advantage of sym-

metries in the transformation matrix to reduce the amount of computation required for 

accurate spectral analysis of audio data. It seems likely that such a matrix factoring 

scheme could be found.

6.6. Improvements to the Cooley-Tukey FFT

6.6.1 Outline of Efficiency Concerns and Opportunities

The STFT as we use it in our algorithm includes a substantial amount of overlap 

in the time intervals between the set of component FFTs that make up the STFT. There is 

possible redundancy here and an opportunity for efficiency improvement if a variation of 

the Cooley-Tukey algorithm can be designed that lets the STFT reuse some data from the 

subdivision steps of one FFT transform with neighboring FFTs. 

(Press, et al., 2002), (Elliot & Rao, 1982) and (Brigham, 1974) show details in the 

FFT decomposition logic that strongly suggest this is a practical, possibly relatively sim-

ple, optimization, but the idea came to us late in this research, and we haven’t fully ex-

plored its possibilities. It would be a good topic for a PhD dissertation.

The basic strategy of the FFT is to transform the original time domain data set 

into a frequency domain data set by progressively factoring the matrix which represents 

the overall Fourier transform. The straightforward approach to the transform would use 
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an NxN matrix for an N-point FFT. Each factor in the matrix represents an exponent for 

the complex exponential function, which is defined as ex+iy = cos(x) + i*sin(y). These 

matrix factors determine the coefficients of the sine and cosine functions which are the 

components of the FFT frequency vector. The sines and cosines are harmonically related 

by integer multiples of x: cos(x), cos(2x), cos(3x) ... . The Cooley-Tukey decomposition 

factors the entries in the transform matrix by the strategy that most integers are multiples 

or sums of other integers, e.g. 8 = 6 + 2, 16 = 2 * 8 etc. The output data of the FFT is 

built up by hierarchical factoring and composition of integer multiples inside the sine and 

cosine functions which represent the harmonically related frequencies. A very large num-

ber of intermediate small data sets are generated.

The matrix coefficients could of course be calculated directly by numerical inte-

gration of products of the Fourier basis functions with the audio data set, but this strategy 

is very costly: O(N2). By comparison, the matrix factoring scheme of the Cooley-Tukey 

transform creates a number of intermediate matrices that are very sparse -- i.e. in each 

intermediate NxN matrix, there are only N non-zero entries, and so each step only needs 

approximately N multiplications and additions. Since there are log(N) intermediate ma-

trices, the overall compute cost of Cooley-Tukey is O( N*log(N) ). In the Cooley-Tukey 

algorithm, the decomposition commonly is done by powers of two, taking further advan-

tage of binary arithmetic and logical operations available as hardware operations in CPUs 

and DSP chips. 

6.6.2 Reusing Overlapping Data Windows

It would be very advantageous when performing the STFT if the subdivided data 

sets of one FFT could be reused for computing part of the neighboring FFTs. An overlap 

of 128 data points would correspond to using the fourth subdivision step of an FFT for a 

2048 data point sample ( 128 * 24 = 2048 ). Thus rather than computing this subdivided 

data set for each FFT, one would reuse it for any FFT which overlapped the time interval 
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of the original data that corresponds to this subdivided data set. Of course the set of de-

composed integer factors in the transform matrix must also match. If a factoring scheme 

were constructed along these lines, the STFT compute cost would be greatly reduced.

6.7  Instantaneous Frequency Techniques

Our dissatisfaction with the low frequency resolution which can be obtained by 

the FFT led us to want an algorithm or piece of hardware which returns information about 

instantaneous frequencies that are present in the audio waveform. Instantaneous (or very 

short time slice) frequency extraction is a large part of the data collection strategy of the 

human ear, as noted in Appendix E. An idea from our work in numerical analysis sug-

gested that a Taylor series could be constructed using the mathematical derivatives of the 

waveform to fit a spline interpolation of the input data, giving information about the dy-

namics of the signal on a much shorter time scale than is practical using an FFT. Splines 

can be time shifted and overlapped as is done in the STFT. Changes in the interpolation 

function between time slices can be a source for information features much like we use 

spectral changes between FFTs in the current algorithm. Proving correlations between the 

changing derivatives and instantaneous frequency as measured by the cochlea (or other 

high resolution device) would be a mathematically challenging task beyond the current 

scope. Finding useful patterns in the derivatives and spline interpolations might be a sim-

pler task. If we plot the information in a visually cogent manner, as we have done for the 

STFT and time series waveforms, the human biocomputer can tell us at a quick glance if 

there are useful patterns present which can be extracted. The next step would be to create 

an extraction algorithm. This is a well proven research technique.

The derivatives of the audio waveform could give a more precise view of rapid 

changes of the audio than spectral analysis does. We have not analyzed the compute cost 

of the Taylor series approach. If it was similar to the cost of an FFT, this algorithmic ap-

proach would be practical. If instantaneous frequency processing in software is too ex-
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pensive, then specialized DSP hardware would be needed. (Schwartz et al., 1999) report 

on work done to construct a silicon cochlea using VLSI chip fabrication technology.

A very late breaking discovery in the Matlab documentation also gives us hope 

that the Hilbert transform could be used to obtain instantaneous frequency information.

6.8  Swingee Maker

Based on visual inspection of the diffdot plots of rhythms in the analyzed sam-

ples, we believe that Fourier series can be used to generate the time variations which cor-

respond to swing feel in music. Cases like the electric guitar in Graceland or the pulse 

and secondary events in the pandeiro batida clearly show a set of data points which could 

be closely approximated by a sum of sine and cosine waveforms. 

Fourier series solution is a standard method for solving the systems of differential 

equations that would be used for physically accurate mathematical models of real world 

nonlinear dynamical systems like a train or streetcar, or the rhythmic motion of the hu-

man body. Due to the complexity and subtleties of swing rhythms’ timing variations, an 

algorithm for automated generation of such patterns needs to accurately mimic the real 

world systems that give rise to swing as played by human musicians. If the algorithm 

used Fourier series to generate waveforms for producing these timing differences, the 

currently discovered swing waveforms (chapter 5) could be closely approximated. A fur-

ther refinement would be to use the Fourier series waveforms to drive coupled nonlinear 

dynamical systems of partial differential equations. This would greatly reduce any me-

chanical repetition which might result from using the Fourier series by themselves. As 

previously noted, the human perceptual system is very astute at distinguishing natural and 

artificial patterns, and successful generation of high quality swing rhythm timing varia-

tions would probably require such an approach as we describe.
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APPENDICES

A1. Interviews and Other Field Work

There’s no substitute for direct interaction with music teachers if one wishes to 

gain insight into the mechanics and meaning of music. I have studied Brasilian percus-

sion for about ten years with teachers from Brasil, and some teachers from the USA and 

other countries. I’ve had exposure to other drumming traditions, but my primary knowl-

edge is rooted in Brasilian culture and music.

Throughout this learning curve, there have been several struggles. Primary is the 

difficulty of perceiving in real time what the rhythmic patterns are. Second is trying to 

perceive and understand the relationships between different batidas being played simulta-

neously. Finally, after getting the basic data (batida) correct and locating the rhythm in 

correct temporal relationship to one or more primary features in the other rhythms (e.g. 

the downbeat and offbeat as played by the surdo), then there is the difficulty of playing 

the batida with the right swingee feel. Note that “correctness” here may not be limited to 

a single answer. Musical performance is not like database information retrieval.

A1.1 Kim Atkinson’s Thoughts on 4/4, 6/8 and Other Conundra

Kim Atkinson is a professional drummer and teacher in the San Francisco Bay 

area. Several conversations with Kim at California Brasil Camp (CBC) provided ideas 

and insights for this thesis project.

Kim gave me the original idea of comparing swingee with straight time during 

conversations about swing feel, and the limitations of music software. In particular Kim 

criticized how most if not all music production software tries to cram all rhythmic subtle-

ties into MB notation: e.g. “... and then it [the software] put in about a million rest sym-

bols because I didn’t play the note exactly where it thought the beat should be.” Kim and 
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John Santos both cautioned me in my ignorance about the differences between Cuban 

swing and other swing styles as compared to American Swing and swingee. Insights like 

these are difficult to garner from books. John is also a professional musician in the San 

Francisco Bay area, and has been nominated for two Grammy awards.

Kim also told a story about some West African drummers he knows, and their at-

tempts to use MB form to notate some complex rhythms from their tribal tradition. The 

rhythms have elements of 4/4 and 6/8 counting, and possibly additional counting tricks 

and subtleties -- I wasn’t entirely clear on this extra aspect. The drummers transcribed the 

rhythms into both 4/4 and 6/8 and then the rhythmic data was played by a computer se-

quencer. Neither the 4/4 nor the 6/8 meter adequately captured the authentic count or 

feeling of the rhythms. The quandary is that the rhythms really are both and neither 4/4 

and 6/8 at the same time -- a fairly common motif in West African drumming and its Bra-

silian and Cuban descendants. This aspect is part of what Shawn Moore meant in his 

opinion that swing comes from a 6 against 4 rhythm (see introduction).

A1.2 Learning an Ile Aye Caixa Batida, and the Perception of Timing

At CBC 2005, I played under the direction of Marcio, a master drummer from the 

Ile Aye group in Salvador, Brasil. The caixa batida that Marcio taught is deceptively sim-

ple, but I found it very difficult to play cleanly. Also, I experienced a unique perceptual 

phenomenon while learning this rhythm. On the first day of class, playing the rhythm it-

self and hearing the beats in time with the other drums was difficult, and was made more 

so because there was a temporal mismatch between my hearing a beat event, and watch-

ing the same event played by a fellow student who knew the rhythm and played it well. 

Every time I heard the beat, the other student’s drumstick was seen to be at the top of the 

swing rather than being at the drum head. The sound of the beat, of course, is generated at 

the point in time and space when the stick hits the drum head. Over the course of several 

days, my perception of these two sources of observing the beat events slowly became 
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synchronized as I learned the rhythm better and became accustomed to the enormous 

sound volume of the bateria. For those unfamiliar with Brasilian batucada (Samba music 

played by an army of drummers), it is at least as loud as standing between two train 

tracks with freight trains rushing by at high speed a few feet from your ears. Of course it 

is a good idea to wear earplugs. Eventually the visual and auditory inputs were closely 

synchronized in my perception.

I believe part of the cause of the perceptual synchronization mismatch was due to 

a physiological response in the hearing system. The front end audio processing neurons 

develop noise canceling internal signals that reduce the apparent sound volume in the 

audio cortex. This noise canceling effect is perhaps related to the tinnitus condition: e.g., 

I have a chronic high frequency internal audio signal which is matched to the horizontal 

scan frequency of television:  a legacy of watching too much TV too closely on a noisy 

set as a child. A well known similar effect in the visual system produces a 3D effect from 

a single image (e.g. photograph) when one eye is covered with a dark lens while the other 

is not. This can be done by popping out one lens from a pair of sunglasses.1 The image 

entering the visual cortex through the dark lens is slightly delayed in the neural process-

ing circuity compared to the clear eye, and the temporal mismatch tricks the visual sys-

tem into interpreting the stimulus as three dimensional information. 

(Schulze, et al., 1999) have investigated the learning process with respect to the 

beat or periodicity perceptual phenomenon, as we allude to in Appendix E. Their research 

into the auditory response of the Mongolian gerbil showed two different neural encoding 

mechanisms for low vs high frequency sounds. They suggest that different learning rates 

for the two different neural coding mechanisms may be caused by the presence of beat 

pattern detection for low frequencies, whereas beat pattern detection does not happen for 

sounds at higher frequencies than about 1 or 2 KHz. This is an area for further research.
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A1.3 California Brasil Camp

California Brasil Camp (CBC) is an annual workshop held in the Redwood forests 

of Northern California at the Cazadero Performing Arts Camp. It is a full time immersive 

experience in Brasilian music and dance. Up to six class sessions are held each day for a 

week, taught by professional Brasilian musicians and dancers. For those who are inter-

ested in Brasilian music, dance and culture, this is a very high quality experience, and 

each time I go there my skills and knowledge improve substantially. More information 

can be found at www.mameluco.com/cbc . Jovino Santos Neto, who teaches jazz compo-

sition and ensemble performance at CBC has published several source books on his web-

site (www.jovisan.net) including (Neto, 2005), which contains many commonly played 

Brasilian songs and rhythms. 

In addition to the formal classes, students and teachers mingle constantly, Portu-

guese is spoken as commonly as English, and the evenings include much music perform-

ance by the teachers such as pagode and forro. These are folk music forms in Brasil that 

many people play or listen to several times a week, starting from childhood, at neighbor-

hood gatherings. The early exposure gives Brasilians a natural knowledge of the music 

patterns and feelings without resorting to technical learning approaches like counting the 

beat. Indeed, many very excellent Brasilian musicians don’t read music2, and some have 

difficulty counting time in the MB style. I remember Mestre Beiçola trying to teach some 

of us samba de roda which has a tricky 3 against 4 feeling. He plays it very well, but he 

learned by ear so couldn’t count it very well. He ended up showing us and explaining “hit 

here [right hand], here [left hand], wait a little bit, here [right hand].’

A2. Brasilian Music and Culture

If you can’t go to New Orleans for music, go to Brasil. If you go to Brasil, be sure 

to visit Salvador, Pernambuco and Rio de Janeiro at the least, because these three places 
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are historical and current sources of a great deal of Brasilian music. Every town and city 

has its own styles and traditions. In addition to professional music and dance perform-

ance, it is important to connect with casual musical gatherings to experience these too. 

Brasilians are very open and friendly and such connections are easy to make.

A2.1 Musical Instruments and Style

The basic Brasilian percussion instrument is the pandeiro, analyzed in detail in 

Chapter 5. Other instruments include surdo (bass drum), caixa (kai-shah, a Brasilian 

snare drum), ganza and caixixi (kai-shee-shee, shakers), agogo (bell, usually 2 tones), 

tamborim (a small hand drum played rapidly with a very lightweight stick), conga and its 

traditional counterpart from the Afro-Brasilian tradition, the atabaque (ah-tah-bah-key). 

Another crucial and very peculiar instrument is the cuica (quee-kah), which sounds a bit 

like a cartoon monkey singing samba. Could You be Loved by Bob Marley includes a 

cuica throughout the entire song. String and wind instruments are also played in many of 

the Brasilian styles. More information can be found at

http://brazilianpercussion.com/english 

www.brazmus.com 

Brazildrums.com  ( http://65.254.62.162/~brazildr/main/ )

 www.espiritodesamba.com 

www.espiritodrums.com 

www.casasamba.com 

A2.2 The Culture of Enjoying Life

There’s something of a mystery as to why Brasilians are generally pretty happy 

and low stress people, even though there are many difficulties living in Brasil. Part of the 

reason is surely the fact that so many Brasilians either listen to or play live music several 

times a week. There is a strong folk tradition of pagode where people gather in some 

! 97



one’s back yard or public place to enjoy barbecue and singing and playing songs that eve-

ryone grows up with and knows by heart. The only cultural event in the USA which re-

motely resembles pagode would be singing folk songs around a campfire, but the level of 

musical quality and sophistication of such gatherings is very naive and weak compared to 

the musical ability of many Brasilians. The comment has been made that random people 

on the street in Brasil often play music better than many professional musicians in the 

USA. These random people (the ones I’ve met) usually are quite modest and insist they 

don’t play very well. 

B.  Other Swing Style Music Software

We encountered two applications that derive their rhythms from samples played 

by professional musicians of the following styles: Darbuka is based on Middle East mu-

sic, and Latigo is based on Latin American music, played by members of Miami Sound 

Machine. These are available from Wizoo Sound Design in Germany, and easily found 

using Google. Due to budget limitations, and lack of availability of free demo versions of 

the software, our experience of this software is limited to reading the manuals and talking 

to drummers who have used them. Based on this information, we believe that this soft-

ware would be a good source for analyzing the swing in these two genres of music, and 

that these swing styles are different from the styles we have analyzed. 

Another interesting software application for music production is MetaSynth from 

UIsoftware.com . A demo version of this software is available for free, and we found that 

many of the features are unique and interesting, including a feature to enhance rhythmic 

timing.
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C. Code Listing

In this appendix we present our Matlab code used for processing the music sam-

ples in this thesis, as well as examples of code use. We include an example of a script 

which loads musical audio data and the specific parameter sets we used for processing the 

data: frequencies, choice of event bands, subdivision strategy and thresholds.

C1. Example Script for Loading Musical Audio Data

%  loadsiu.m  loads some samples from Bob Marley Stir it up
 
% revised version for chkdot rev2. 
 
% Bob Marley, Stir it up
cd ~/Academics/SOU/thesis/final.delivs/data/audio/analyzed.samples/stir.it.up
 
siuIntro1 = wavread('Situp.intro.1a.m.mix.wav');
siuIntro2 = wavread('Situp.intro.12bar.mono.mix.wav');
siuQuench = wavread('Situp.quench.me.m.mix.wav');
siuBridge1 = wavread('Situp.bridge.32bar.m.mix.wav');
siuBridge2 = wavread('Situp.bridge2.16bar.m.mix.wav');
% for bridge3 use freqs = [ 20 240 2000 4500 17000 ] 
siuBridge3 = wavread('Situp.bridge3.16bar.m.mix.wav');
siuBridge4 = wavread('Situp.bridge4.16bar.m.mix.wav');
 
 
siu_freqs = [20  250 400 600 800 900 1000 1200 1400 1500 1700 2500 8000 22000]
siu_freqs2 = [20 120 250 400 600 800 900 1000  3500 8000 22000]
siu_freqs2a = [20 120  400 600 800 900 1000  3500 8000 22000]
siu_freqs3 = [20   400   900   3500 8000 17000]
siu_freqs4 = [20 250  400  8000 17000]
siu_freqsbr3 = [ 20 240 2000 4500 17000 ]
siu_freqsquench = [ 20 200 250 370 800 2500 4500 8000 22000 ]
siu_pulse = [-13 8]
siu_pulse2 = [-9 4]
siu_pulse2a = [-8 8]
siu_pulse3 = [-3 4]
siu_pulse3a = [-5 4]
siu_pulse4 = [4 3]
siu_pulse4a = [4 11]
siu_pulsebr3 = [4 4]
siu_pulsequench = [-8 10]
siu_pulsequench2 = [-8 6]
 
siu_events = [1 ]
siu_events2 = [7 ]
siu_events3 = [3 ]
siu_eventsbr3 = [2 ]
siu_subdiv = [24  ]  % 1/6 subdiv
siu_subdiv2 = [32  ]  % 1/32 subdiv
siu_subdiv3 = [32  ]  % 1/32 subdiv
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siu_subdiv3a = [16  ]  % 1/16 subdiv
siu_subdiv4  = [16  ]  % 1/16 subdiv
siu_subdivquench  = [60  ]  % 1/16 subdiv
siu_thresh = [.1, .1 ; .2, .35]
siu_thresh2 = [.1, .1 ; .2, .2]
siu_thresh2a = [.05, .05 ; .5, .5]
siu_thresh3 = [.05, .05 ; .15, .15]
siu_thresh4 = [.05, .05 ; .5, .4]
siu_thresh4a = [.2, .2 ; .4, .25]
siu_threshbr3a = [.2, .2 ; .1, .1]
 
cd ../../../gfx  % save all figs and pix to this dir

The resultant Matlab variables look like this:

siuQuench          575022x1                   4600176  double array

siu_events              1x1                         8  double array

siu_freqs               1x15                      120  double array

siu_freqsquench         1x9                        72  double array

siu_pulse               1x2                        16  double array

siu_pulsequench         1x2                        16  double array

siu_pulsequench2        1x2                        16  double array

siu_subdiv              1x1                         8  double array

siu_subdivquench        1x1                         8  double array

siu_thresh              2x2                        32  double array

siu_thresh2             2x2                        32  double array

C2. Example Matlab Function Calls

First call the chkdot script with a particular audio sample, and FFT parameters. 

Here we process the “Quench me darling ...” verse from Stir it up by Bob Marley and 

perform a 2 Ks FFT in the STFT. The FFT window slides 132 audio samples (3 millisec-

onds) between subsequent FFT processing. The size of this audio sample is 575022 ele-

ments. The number of FFTs in the STFT is given by 

(samp_num_elems - FFT_size )/FFT_overlap, 

in this case we would expect 4340 FFT tiles in the STFT.  

matlab > chkdot(siuQuench, 2048, 132) 

The first call to chkdot produces a specgram plot of the music sample based on 

the FFT parameters, and retains the spectral data as an internal Matlab matrix which is 

! 100



used in subsequent calls to chkdot. This allows the specgram data to be reused with dif-

ferent frequency, event band, subdivision and threshold parameters. This is a practical 

strategy since extracting useful information from the specgram is generally an interactive 

process of discovery and refinement, rather than a single step that yields optimal results 

on the first attempt. Subsequent calls to chkdot look like this:

matlab > chkdot(siu_freqs, siu_pulse, siu_events, siu_subdiv, siu_thresh) 

C3. Main Audio Processing Matlab Script

function  chkdot(param1, param2, param3, param4, param5)
%
%  parse an audio or other signal with specgram STFTs. and plot the result(s)
%              
%  indata is the signal data, 
%  freq_vec is a list of frequencies for sub-band
%  fft_len is the size of the STFT FFTs. use default FFT window (Hanning):
%  overlap_delta is the shift in sample count between STFTs in specgram
%              
%  API redesign 24apr06: 5 calling options == 
%      { no params, 1 param, 2 params, 3 params, 5 params }
%        none  --> default example of pandeiro
%        one   --> audio data, 2 Ks FFTs, 440 samples overlap (10 msecs
%        two   --> ( 'save', 'dataname'   OR   'load', 'dataname' )
%        three --> ( indata, FFTlength, FFToverlap )
%              canonical first call. sets up data space for this sample
%              only plots the specgram, keeps persistent spectral data
%              another call like this wipes the old data, sets up new
%        five  --> ( freqs, pulse, events, subdivs, thresholds )
%              subsequent calls on persistent spectral data
%              freqs = ( f1, f2 [, f3 [, f4 [, f5 ... ]]] )
%              pulse = ( chan #, # of events in pattern [, initial skip ] )
%              events = ( chan1 [, chan2 [, chan3 ...]] ) 
%              subdivs = ( chan1 [, chan2 [, chan3 ...]] ) 
%              thresholds = ( func low, func high [, df/dt low, df/dt high
%                             [, d2f/dt2 low, d2f/dt2 high ]] )
 
tic % start timer to measure script execution time  
argc = nargin
sample_rate = 44100 % CD sampling rate  
 
% retain these: computed in the first pass, and used in all subsequent passes
persistent samp_spec samp_freqs samp_times overlap samplength sampletime 
 
if argc == 0 % load a default sample
  indata = 
wavread('~/Academics/SOU/thesis/data/audio/batucada.samples/pandeiro.samples/pa
ndeiro4barmono1.wav');
  fft_len = 1024
  overlap = 132  % 3 msec
  win_len = fft_len - 8
  event_loc = [1 4] % lowest freq band, 4 events/cycle
  freq_vec =  [ 20 750 15000 ]
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  samp_name = 'p4bar'
  firstpass = true
end
if argc == 1
  indata = param1;
  fft_len = 2048
  overlap = 440  % 10 msec
  win_len = round(fft_len * 0.95)
  firstpass = true
end
if argc == 2
  % load and save functions. not yet implemented
  return
end
if argc == 3 % first pass of real processing work 
  indata = param1;
  fft_len = param2
  overlap = param3
  win_len = round(fft_len * 0.95)
  if win_len <= fft_len - overlap
      win_len = fft_len - overlap + 1
  end
  firstpass = true
end
if argc == 5
  freq_vec  = param1  % print out values and ID the freq_vec
  pulse_vec = param2
  events_vec = param3
  subdiv_vec = param4
  thresholds = param5
  firstpass = false
end
 
if   firstpass == true
  % do a specgram on the indata, get/retain power, freqs & time info 
    % handle mono or stereo indata -- don't mix, just use L chan
    samp_chans  = length(indata(1,:))
    if(samp_chans > 1)
        samp_data = indata(:,1);
    end
    if(samp_chans == 1)
        samp_data = indata;
    end
    % get mean value of sample power to use in offsets
    samp_data_pow = samp_data .* samp_data;
    samp_data_abs = abs(samp_data);
    samp_data_mean = mean(samp_data_pow);
    % pad the beginning to get a clean start of signal for FFT
    tenz = ones(3 * fft_len / 4, 1);
    %  don't want bogus data, so set pad value to the sample mean
    tenz = tenz * samp_data_mean;
    samp_data = [tenz ; samp_data];
    samplength = length(samp_data)
    sampletime = samplength/sample_rate
 
    % do the STFT and plot the result
    [ samp_spec samp_freqs samp_times ] = ...
        specgram(samp_data, fft_len, sample_rate, win_len, fft_len - overlap);
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    figure  % newplot does **not** do the right thing, as advert'd
    imagesc([0 sampletime],samp_freqs,20*log10(abs(samp_spec)+eps));
    axis xy;
    xlabel('Elapsed sample time in seconds')
    ylabel('Frequency: 20 Hz to 22,500 Hz')
    colormap jet;
    colorbar('YTickLabel', {'Low','','','','','','','','','High'})
    whos
    toc
    return % done with 1st pass 
end

% 2nd pass 
% extract sub-band info from MxN STFT matrix, and sum the bands for each
%    time slice. rows are freqs, columns are time slices.
% pre-allocate array to hold the sums, rows = number of freqs (minus 1)
%    columns (time slices) is second dim of STFT matrix
num_freq_slices = length( freq_vec ) % how many freq sums to do
    %  num_time_slices = length( samp_spec(1,:) ) 
num_time_slices = length( samp_times )
    % make an extra slot for the grand total sum
subfreqsum = zeros( num_freq_slices , num_time_slices);
num_freqs = length(samp_freqs)
freq_count = 1;
sum_freq_ndxs = zeros(1,num_freq_slices);
% find the freq slice breakpoint ndxs in the specgram MxN matrix
for freq_ndx = 1:1:num_freqs
  if samp_freqs(freq_ndx) > freq_vec(freq_count)
      sum_freq_ndxs(freq_count) = freq_ndx
      freq_count = freq_count + 1
      if freq_count >= num_freq_slices + 1
          break
      end
  end
end
 
% compute the power in each freq slice.  
%   then total all the slices into the last row of subfreqsim matrix
for freq_ndx = 1:1:num_freq_slices - 1
  subfreqsum(freq_ndx, :) = ...
    sum(abs(samp_spec(sum_freq_ndxs(freq_ndx):sum_freq_ndxs(freq_ndx+1),:)));
  % sum the grand total
  subfreqsum(num_freq_slices, :) = ...
    subfreqsum(freq_ndx, :)  + subfreqsum(num_freq_slices, :);
end
 
% norm all slices to one
for freq_ndx = 1:1:num_freq_slices 
  % find max for each sub-band
  freqmax = max(subfreqsum(freq_ndx,:))
  % norm each sub-band by its max/min  to range [0, 1].
  subfreqsum(freq_ndx, :) = (subfreqsum(freq_ndx, :) / freqmax);
end
 
% find timeslice ndx's of events using event_loc vector(s)
pulse_band = pulse_vec(1)   % sub-band used for basic beat pulse
pulse_events = pulse_vec(2) % how many events in a cycle in pulse sub-band
pulse_downbeat = true       % pulse on the downbeat ?
if pulse_band < 0
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  pulse_band = - pulse_band % negative ndx == pulse on backbeat
  pulse_downbeat = false    
end
 
%  events setup logic
secondevents_flag = false;
eventbands_count = length( events_vec )
if eventbands_count > 0
  second_band = events_vec(1)
  second_events = subdiv_vec(1)
  secondevents_flag = true
end
 
  % get first  & second finite diff for each slice and norm to 0 < x < 1 . 
  %   average value for most of the samples will be subfreqmean on
  %   a quiet channel, which is needed for pulse detection. first arm the 
  %   event detector flag event_up when diff(n) > threshold(10. then when next
  %   diff(n) < threshold(2), set event_down flag for event loc, & get time ndx
  
event_count = [ 0 ; 0 ; 0 ] % anticipate having 3 event bands
event_up = false;
event_down = false;
local_max = 0.1;  % zero gives false event detects, so use small num > 0
% start with a minimum number for expected events
event_ndx = zeros(pulse_events, 3) 
for freq_ndx = 1:1:num_freq_slices 
  % find diff for each sub-band == first time derivative of signal
  subfreqsumdiff(freq_ndx,:) = diff(subfreqsum(freq_ndx,:));
  % raise sample min to zero by subtracting min. norm it to [0,1]
  freqmin = min(subfreqsumdiff(freq_ndx,:))
  subfreqsumdiff(freq_ndx,:) = subfreqsumdiff(freq_ndx,:) - freqmin;
  freqmax = max(subfreqsumdiff(freq_ndx,:))
  % norm each sub-band by its max
  subfreqsumdiff(freq_ndx, :) = ( subfreqsumdiff(freq_ndx, :) / freqmax );
  run_len = length( subfreqsumdiff(freq_ndx, :) ) % for pulse & other events
  % just using the height of function WF for event trigger logic.
  subfreqmean = mean( subfreqsum(freq_ndx, : ) ) 
  
  if freq_ndx == pulse_band
    skip = false;
    for time_ndx = 1:1:run_len
      % keep track of local max. reset after event up/down logic switch off
      if  subfreqsum(freq_ndx, time_ndx) > local_max
        local_max = subfreqsum(freq_ndx, time_ndx);
      end
      if subfreqsum(freq_ndx, time_ndx) > thresholds(1,1)
         % standard for many samples. OLD keep for reference 25apr06
         %  if subfreqsumdiff(freq_ndx, time_ndx) > (freq_ndx + 0.6 )
         % if subfreqsum(freq_ndx, time_ndx) > (freq_ndx + 2 * subfreqmean )
        event_up = true;
        event_down = false;
      end
      if event_up == true
        if ~skip
          if subfreqsum(freq_ndx, time_ndx) < local_max          
            event_down = true;
            event_up = false;
            skip = true;
          end
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        end
      end
      % if subfreqsumdiff(freq_ndx, time_ndx) < ( freq_ndx + 0.35 )
      if subfreqsum(freq_ndx, time_ndx) < thresholds(1,2)
          local_max = 0.01;
          event_up = false;
          skip = false;
      end
      if event_down == true
        event_count(1) = event_count(1) + 1;
        event_ndx( event_count(1), 1 ) = time_ndx - 1;
        event_up = false;
        event_down = false;
      end
    end
  end
  if secondevents_flag == true
    if freq_ndx == second_band
      skip = false;
      for time_ndx = 1:1:run_len
        if  subfreqsum(freq_ndx, time_ndx) > local_max
          local_max = subfreqsum(freq_ndx, time_ndx);
        end
%      if subfreqsumdiff(freq_ndx, time_ndx) > (freq_ndx + 0.6 )
        if subfreqsum(freq_ndx, time_ndx) > thresholds(2,1)
           event_up = true;
          event_down = false;
        end
        if event_up == true
           if ~skip
             if subfreqsum(freq_ndx, time_ndx) < local_max
               event_down = true;
               event_up = false;
               skip = true;
             end
           end
        end
%       if subfreqsumdiff(freq_ndx, time_ndx) < ( freq_ndx + 0.45 )
        if subfreqsum(freq_ndx, time_ndx) < thresholds(2,2)
          local_max = 0.01;
          event_up = false;
          skip = false;
        end
        if event_down == true
          event_count(2) = event_count(2) + 1;
          % detecting this means peak occurred one sample ago
          event_ndx( event_count(2), 2 ) = time_ndx - 1;
          event_up = false;
          event_down = false;
        end
      end
    end
  end
  freqmin = min(subfreqsumdiff(freq_ndx,:))
  freqmax = max(subfreqsumdiff(freq_ndx,:))
  event_ndx = event_ndx  % print out event ndx's
  event_count = event_count
end
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% this needs to be updated for multiple event lists. 20feb06
pulse_events_count = length(event_ndx(:, 1));
% get the ndx of last non zero entry
for t_ndx = 1:1:pulse_events_count
    if event_ndx(t_ndx, 1) == 0
        break
    end
end
pulse_events_count = t_ndx - 1
% preallocate matrices for ndx'ing the beat lines
% vectors with event ndx metric
note_event_x = zeros(pulse_events_count * 2 + 2, 1);
note_event_y = zeros(pulse_events_count * 2 + 2, 1);
beat_line_x = zeros(pulse_events_count * 2 + 2, 1);
beat_line_y = zeros(pulse_events_count * 2 + 2, 1);
 
% when add 3rd channel, need to get length of non-zero part of 2nd like 1st
%   this current logic assumes more events in 2nd chan than in pulse chan
second_events_count = length(event_ndx(:, 2)) 
 
 % get MB beat locs for beat lines, not actual note event locs
 %   this whole biz is calc'd w/ndx of events. later, convert these
 %      (working algo) sets into time event metric, not event ndx.
 %      do this by dividing the working data sets by the right factor based
 %      on the gyrations needed for convert CD audio times to FFT times to
 %      chkdot events time ndx's to these MB ndx's.
 %   do this based on this logic:
 %       xtime = linspace( 0, sampletime, num_time_slices );  and
 %       %  plot(subfreqsum(freq_ndx, :)  + freq_ndx - 1 , xtime)
 %     which are currently buggy.
 
m1_beat1 = event_ndx(1, 1) % loc of first MB downbeat
m2_beat1 = event_ndx(1 + pulse_events, 1) % loc of 2nd MB downbeat
mb_delta = m2_beat1 - m1_beat1
subdiv_count = pulse_events - 1
subdiv2_count = second_events - 1
subdiv_delta = mb_delta / pulse_events
subdiv2_delta = mb_delta / second_events
% time shift if pulse is on the offbeat instead of downbeat
mb_offbeat_ndx = ( m2_beat1 - m1_beat1 )/ (2 *  pulse_events)
for beat_ndx = 0:1:pulse_events_count / pulse_events - 1
  mb_count_ndx = beat_ndx * mb_delta; % get delta ndx
  if pulse_downbeat == true  % pulse is on the downbeat
    beat_line_x(2 * beat_ndx + 1) = m1_beat1 + mb_count_ndx;
    beat_line_x(2 * beat_ndx + 2) = m1_beat1 + mb_count_ndx;
    % subdivision markers
    for subdiv_beat_ndx = 1:1:subdiv_count
      subdiv_line_x(subdiv_beat_ndx + (subdiv_count * beat_ndx + 1)) = ...
        beat_line_x(2 * beat_ndx + 1) + subdiv_delta * subdiv_beat_ndx;
      subdiv_line_y(subdiv_beat_ndx + (subdiv_count * beat_ndx + 1)) = ...
        num_freq_slices;
    end
    if secondevents_flag == true
      for second_beat_ndx = 1:1:second_events
        subdiv2_line_x(second_beat_ndx + (subdiv2_count * beat_ndx + 1)) = ...
          beat_line_x(2 * beat_ndx + 1) + subdiv2_delta * second_beat_ndx;
        subdiv2_line_y(second_beat_ndx + (subdiv2_count * beat_ndx + 1)) = ...
          num_freq_slices;
      end
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    end
  else  % pulse is on the backbeat
    beat_line_x(2 * beat_ndx + 1) = m1_beat1 + mb_count_ndx - mb_offbeat_ndx;
    beat_line_x(2 * beat_ndx + 2) = m1_beat1 + mb_count_ndx - mb_offbeat_ndx;
    % subdivision markers. already have pulse, so only mark
    %   count(pulse_events - 1) for subdivs
    for subdiv_beat_ndx = 1:1:subdiv_count
      subdiv_line_x(subdiv_beat_ndx + (subdiv_count * beat_ndx + 1)) = ...
        beat_line_x(2 * beat_ndx + 1) +  subdiv_delta * subdiv_beat_ndx;
      subdiv_line_y(subdiv_beat_ndx + (subdiv_count * beat_ndx + 1)) = ...
        num_freq_slices;
    end
    if secondevents_flag == true
      for second_beat_ndx = 1:1:second_events
        subdiv2_line_x(second_beat_ndx + (subdiv2_count * beat_ndx + 1)) = ...
          beat_line_x(2 * beat_ndx + 1) + subdiv2_delta * second_beat_ndx;
        subdiv2_line_y(second_beat_ndx + (subdiv2_count * beat_ndx + 1)) = ...
          num_freq_slices;
      end
    end
  end
  beat_line_y(2 * beat_ndx + 1) = 0;  % mark the beats with vert lines
  beat_line_y(2 * beat_ndx + 2) = num_freq_slices;
end
 
%  get ndx's for note events
for note_ndx = 1:1:pulse_events_count
  note_event_x(note_ndx, 1) = event_ndx(note_ndx, 1);
end
for note_ndx = 1:1:second_events_count
  note_event_x(note_ndx, 2) = event_ndx(note_ndx, 2);
end
 
%  do the time series plot: line graphs showing events in diff freq sub-bands
% for plotting the diff WFs  add the
% freq ndx to get vertical offset same as timeseries data vert offset.
figure   % chkdot
hold on
% adjust x axis for elapsed sample time rather than ndx of time series
xtime = linspace( 0, sampletime, num_time_slices );
xlabel1 = 'Elapsed sample time (seconds)';
ylabel1 = 'Frequency bands for note event channels';
ylabel2 = 'Delta time between note events (seconds)';
% compute the equivalent factor to divide the beatline etc vectors by.
ndx_to_sampletime = num_time_slices / sampletime
 
% now use this factor to divide the sets of subdiv lines and other data
%     sets that are calc'd for event ndx's above.
%   e.g. note_event_x, note_event_y, beat_line_x, beat_line_y, 
%        subfreqsum, subfreqsumdiff, subdiv2_line_x, subdiv2_line_y,
%        diff_pulse_times, diff_second_times   << maybe others >>
 
% vectors with elapsed sample time metric
note_event_xtime = note_event_x/ndx_to_sampletime ;
note_event_ytime = note_event_y/ndx_to_sampletime ;
beat_line_xtime = beat_line_x/ndx_to_sampletime ;
beat_line_ytime = beat_line_y/ndx_to_sampletime ;
 
for freq_ndx = 1:1:num_freq_slices
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  plot(xtime, subfreqsum(freq_ndx, :)  + freq_ndx - 1)  % vert offset by ndx
% plot the first derivative. visually too cluttered for general use
%   plot(subfreqsumdiff(freq_ndx, :), 'g')
 %  plot(subfreqsumdiff(freq_ndx, :), 'k*', 'MarkerSize', 2)
   % mark the note events with red diamonds
  if freq_ndx == pulse_band
    for note_ndx = 1:1:pulse_events_count
      plot(note_event_xtime(note_ndx, 1), freq_ndx - 0.5, 'rd', ...
        'MarkerSize', 12, ...
        'LineWidth',2, 'MarkerEdgeColor','k', 'MarkerFaceColor','r')
    end
  end
  if secondevents_flag == true
    if freq_ndx == second_band
      for note_ndx = 1:1:second_events_count
        plot(note_event_xtime(note_ndx, 2), freq_ndx - 0.5, 'rd', ...
          'MarkerSize', 12, ...
          'LineWidth',2, 'MarkerEdgeColor','k', 'MarkerFaceColor','r')
      end
    end
  end
end
% plot the MB beat locs, not actual note event locs
for beat_ndx = 1:2:pulse_events_count * 2  / pulse_events - 1
  plot(beat_line_xtime(beat_ndx:beat_ndx + 1), ...
       beat_line_y(beat_ndx:beat_ndx + 1), 'k--', 'LineWidth',2)
end
 
% stem plot the meter subdiv markers
stem(subdiv_line_x/ndx_to_sampletime, subdiv_line_y, ...
    'g--', 'MarkerSize', 0, 'LineWidth', 2)
if secondevents_flag == true
  stem(subdiv2_line_x/ndx_to_sampletime, subdiv2_line_y, ...
      'm:','MarkerSize', 0, 'LineWidth', 2)
end
x_delta = overlap / 44.1;  % in msec. fix/verify this time increment 24apr06
x_delta_int = round(x_delta);
% get closest int if delta is small enough
if abs(x_delta_int - x_delta) < .05
    x_delta = x_delta_int;
end
xlabel(xlabel1)
ylabel(ylabel1)
 
% label the frequency bands
subfreqstring = zeros(num_freq_slices,1);
for freq_ndx = 1:1:num_freq_slices - 1
  str = sprintf('%d Hz to %d Hz',  freq_vec(freq_ndx), freq_vec(freq_ndx + 1))
  annotation(gcf, 'textbox','Position', [.4 freq_ndx/(1.2 * num_freq_slices)    
             .05 .05 ], 'String', str, 'EdgeColor', [1 1 1])
end
num_freq_slices/(1.2 * num_freq_slices)
str = sprintf('%d Hz to %d Hz',  freq_vec(1), freq_vec(num_freq_slices))
annotation(gcf, 'textbox','Position', [.4 num_freq_slices/(1.2 * ...
           num_freq_slices) .05 .05 ],  'String', str, 'EdgeColor', [1 1 1])
    
% plot the note event diffs: 
figure  % diffdot
hold on
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% plot the delta time values 
% first get the deltas for pulse band
%   mimic this: diff_pulse_times = diff(event_ndx(:, 1));
%   but get rid of neg value and trailing zeroes
diff_pulse_times(1) = 0;
pulse_event_x(1) = 0;
diff_pulse_times(2) = 0;
pulse_event_x(2) = 0;
for note_ndx = 1:1:pulse_events_count
  if event_ndx(note_ndx + 1, 1) > 0 % is next entry real?
    diff_pulse_times(note_ndx + 2) = event_ndx(note_ndx + 1, 1) 
                                     - event_ndx(note_ndx, 1);
    pulse_event_x(note_ndx + 2) = note_event_x(note_ndx,1);
  else
    break % bail out after finding all real entries
  end
end
 
% get the secondary events lined up like ducks
% this deals with the events time diff vec, not the events vec
for note_ndx = 1:1:second_events_count - 1
  diff_second_times(note_ndx + 1) = event_ndx(note_ndx + 1, 2) ...
                                    - event_ndx(note_ndx, 2);
  second_event_x(note_ndx + 1) = note_event_x(note_ndx,2);
end
 
pulse_event_xtimes = pulse_event_x(3:length(pulse_event_x))/ndx_to_sampletime;
scaled_diff_pulse_times = 
diff_pulse_times(3:length(diff_pulse_times))/ndx_to_sampletime;
max_sdpt = max(scaled_diff_pulse_times)
min_sdpt = min(scaled_diff_pulse_times)
mean_sdpt = mean(scaled_diff_pulse_times)
ddx = [0, sampletime];
ddymaxp = [max_sdpt , max_sdpt];
ddyminp = [ min_sdpt , min_sdpt];
ddymeanp = [ mean_sdpt , mean_sdpt];
ddhalf = .5 * mean_sdpt;
ddqtr = .25 * mean_sdpt;
ddeighth = .125 * mean_sdpt;
ddthird = .33333 * mean_sdpt;
ddsixth = .16667 * mean_sdpt;
ddyhalf = [ddhalf, ddhalf];
ddyqtr = [ddqtr, ddqtr];
ddythird = [ddthird, ddthird];
ddysixth = [ddsixth, ddsixth];
ddyeighth = [ddeighth, ddeighth];
plot(ddx, ddymaxp, 'c--', 'LineWidth',2)
plot(ddx, ddyminp, 'c--', 'LineWidth',2)
plot(ddx, ddymeanp, 'c--', 'LineWidth',2)
 
plot(ddx, ddyhalf, 'c--', 'LineWidth',2)
plot(ddx, ddyqtr, 'c--', 'LineWidth',2)
plot(ddx, ddythird, 'c--', 'LineWidth',2)
plot(ddx, ddysixth, 'c--', 'LineWidth',2)
plot(ddx, ddyeighth, 'c--', 'LineWidth',2)
for freq_ndx = 1:1:num_freq_slices
  if freq_ndx == pulse_band
    stem(pulse_event_xtimes, scaled_diff_pulse_times, ...
        'go',  'fill', 'LineWidth',2)
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  end
  
  second_event_xtimes = second_event_x/ndx_to_sampletime;
  scaled_diff_second_times = diff_second_times/ndx_to_sampletime;
  if secondevents_flag == true
    if freq_ndx == second_band
      stem(second_event_xtimes, scaled_diff_second_times, ...
          'r:o', 'MarkerSize', 9, 'LineWidth',2)
    end
  end
end
xlabel(xlabel1)
ylabel(ylabel2)
%annotation('textbox',[1 ddyhalf .1 .05, ], 'String', '1/2',...
    'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .5 .05 .05 ], ...
    'String', '1/2', 'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .333 .05 .05 ], ...
    'String', '1/3', 'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .26 .05 .05 ], ...
    'String', '1/4', 'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .18 .05 .05 ], ...
    'String', '1/6', 'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .11 .05 .05 ], ...
    'String', '1/8', 'EdgeColor', [1 1 1])
annotation(gcf, 'textbox','Position', [.95 .9 .05 .05 ], ...
    'String', 'pulse', 'EdgeColor', [1 1 1])
% annotation(gcf,'textbox', 'Position',[0.38 0.96 0.45 0.026])
 
whos % print out the variables
toc   % print out elapsed time 
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D. Discography

Artist or Compilation Name  Album Name (Date)

Group or Artist Name  Song Title

Paul Simon  Graceland (1986)

Paul Simon  Graceland

Paul Simon  Rhythm of the Saints. (1990)

Paul Simon  Obvious Child

Bob Marley  Legend (1984)

Bob Marley  Stir it up (1973)  

Bob Marley  Could you be loved? (1980)  

Putumayo Presents  Carnival (2001)

Martinho da Vila Canta, Canta minha Gente (1974)

Putumayo Presents  Swing Around the World (2002)

Ka'au Crater Boys  Opihi Man

Duke Heitger and his Swing Band  Swing Pan Alley

Louis Armstrong & Duke Ellington  Louis Armstrong meets Duke Ellington (1962)

It don’t mean a thing if it ain’t got that Swing

Ray Charles  Genius Loves Company (2004)

Ray Charles & Natalie Cole  Fever

Grupo Batuque  Samba de Futebol (2004)

Various examples of batucada, pandeiro, tamborim etc.

Various Artists  Batucada por Favor (1998)

Bob Azzam  Batucada por Favor

Os Ritmistas Brasileiros  Batucada Fantastica (1963/1998)

Luciano Perrone e Nilo Sergio various tracks.  

Virginia Rodrigues  Sol Negro (1997)

Virginia Rodrigues Adeus Batucada  

Other Brasilian groups which we plan to analyze in the future:

Dudu Tucci, Jorge Aragao, Olodum, Ile Aye, Martinho da Vila, Zeco Pagodinho.
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E. Physiology and Psychophysics of the Human Auditory System

The most sophisticated information system on Earth is arguably the human mind. 

While there may exist similarly complex systems, we are ignorant of them. Most of hu-

man information is analyzed in terms of symbol systems, primarily language and mathe-

matics. Indeed some people consider that there is no information, thought or meaning 

without language. These people apparently don’t understand music.

While music can be represented as a symbol system using MB or other notation, 

this static form written on a page is not “music” but merely a guide to the performer for 

playing the music. By rendering the notation into sounds in the real world, the per-

former(s) create the reality of music from the thin sketch of information contained in the 

notation. For many people, music is something that they can only fully appreciate if they 

hear it. While trained musicians may be able to create music in their head by looking at 

notation, this is a difficult or impossible task for most people. In many cultures of the 

world, written notation is not used at all. The music created by these people is often so-

phisticated and complex, with deep informational and emotional content.

E.1  Human Auditory System

I do not claim to be an expert in audiology and psychophysics. This section was 

originally planned to be only a couple of pages, but the subject area proved fascinating 

(and immense). One thing led to another and this piece expanded greatly. Late in the 

game, Dr. Dean Ayers gave his feedback as a domain expert, pointing out both the flaws 

of my interpretations and analyses, as well as his opinions regarding the current views of 

mainstream audiological science. In short, research since (Bekesy, 1960) and (Harwood 

& Dowling, 1986) has shown that these early researchers’ theories were not entirely cor-

rect. This is no surprise in scientific research of course. Rather than attempting an ex-

haustive re-write to fix things, I have cleaned up the egregious errors and left some of my  
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reports about Bekesy, Harwood & Dowling and others as they were, since for all we 

know, research in the near future may show that the theories may be more correct (or 

less) than the current “wisdom” indicates. Every theory in science will eventually be con-

sidered erroneous. It is useful to be aware of our history, and humble about our own theo-

ries and accomplishments.

In this section we present details of how the human ear transforms sound vibra-

tions into patterns of nerve impulses in the auditory cortex. Human beings can generally 

hear sound frequencies from about 20 cycles per second (Hz) to 20,000 Hz at the lower 

and upper limits. Many people have a restricted range of frequency perception, so this is 

considered a best case scenario. Below 20 Hz and above 20,000 Hz perception of audio 

signals is possible, but the mechanism is different from what “hearing” is usually consid-

ered to be. Frequency of sound waves as measured by laboratory instruments corresponds 

to the human perception of pitch or tone: low frequencies are heard as low tones, high 

frequencies as high tones. However, there is more complexity in the human concept of 

tone than merely a short list of frequencies measured in the audio input signal. First, one 

frequency may not always be perceived as the same tone. Loudness of the sound can 

change its apparent pitch under some conditions, and in some frequency ranges. Second, 

combinations of distinct frequencies can create the perception of frequencies which do 

not “officially” exist in the sound source. Church organs take advantage of this effect 

(and have for hundreds of years) to create extremely low notes. The length of an organ 

pipe determines its fundamental (lowest) frequency and very long pipes are needed for 

very low notes. Alternatively, several pipes of shorter length can be used in combination, 

and by setting up a consistent set of frequency differences between pipes, the extremely 

low tone can be generated. This low tone only exists in the human ear and mind. Its 

“frequency” is not physically present in the external sound field (Plomp, 2002). There are 

other situations where frequency and tone do not map directly onto each other. This is a 

vast area of research that includes psychophysics, neuroscience and applied psychology. 
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Figure E.1.1 shows an overview of the human auditory data collection system, 

although it looks like Mr. Spock’s ear, so maybe it’s really Vulcan. Hearing begins with 

sound vibrations from the air striking the ear drum. Movements of the eardrum are trans-

ferred to the inner ear by three bones in the middle ear called the hammer, anvil and stir-

rup. These convert the physical scale of vibrations in gaseous air to a scale suitable for 

the liquid environment in the inner ear whose main component is the cochlea. The coch-

lea is a tapered tube rolled up in a spiral. Dividing the cochlea along its length is the basi-

lar membrane and the Organ of Corti which contains neural vibration sensors, including 

small hair-like cells that are frequency sensitive. Different cells sense different frequen-

cies depending on the cell’s location along the length of the cochlea. The signals from 

these sensors are encoded into the nerve trunk and transmitted to the audio cortex. Infor-

mation features are extracted starting with the initial actions of the Organ of Corti:  the 

amplitude of the audio signal at various frequencies, and the timing relationships between 

frequencies. Frequency relationships such as the detection of correlated harmonics 

amongst the many frequencies present in the audio signal, or phase relationships between 

these component waveforms, may be partially encoded by the cochlea, but these more 

subtle distinctions may be perceived further up the processing chain in the audio cortex or 

brain. Generally, audiology research has failed to show evidence of the use of phase rela-

tionships by the ear (or the brain). My opinion is that this failure is at least partly due to 

the research techniques used. My own perception indicates subtleties which I attribute to 

phase discrimination by my ear/brain. Using the metaphor of sets of specific frequencies 

in an audio signal is useful, but is only a mathematical model of the data present in the 

signal. The real world sound is a complex three dimensional system of physically coupled 

motion patterns of air molecules. The decomposition of this system into a specific set of 

frequencies and phases is a convenient approximation, but can be misleading if inter-

preted literally for all situations. The activity of the audio cortex is far more sophisticated 

than that of any currently used computerized DSP and pattern matching techniques. For 
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example, phase information is known to be used at low frequencies for binaural detection 

of directional information from the external sound field. I have not read of any similar 

techniques used by researchers in computer music analysis.

Figure E.1.2 shows the cochlea by itself, from several viewpoints and a cross sec-

tion. The basilar membrane including Organ of Corti can be seen at several turns of the 

spiral, dividing the two tunnel like chambers of the cochlea.

Figure E.1.1  Overview of Human Auditory Data Collection System

From (Beranek, 1954)
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Figure E.1.2  The Human Cochlea

From (Møller, 2002). Original drawings by Brescher.
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Figure E.1.3 shows a schematic cross section of the cochlea with details including 

the basilar membrane and Organ of Corti. This is a close-up of one of the turns in Figure 

E.1.2, showing most of the upper chamber and part of the lower chamber of the cochlea.

Figure E.1.3  Cross Section of Cochlea

From (Møller, 2002). Originally published by (Davis, et al., 1953) in J. of  Acoust. Soc. 
Am. 25: 1180-1189.

Figure E.1.4 shows an extreme close-up of a small section of the Organ of Corti 

and its frequency sensing hair cells, taken by a scanning electron microscope. Figure 

E.1.5 shows an even closer view of one of the several dozen hair tufts which are visible 

in Figure E.1.4. The hair tufts are colored yellow in Figure E.1.4, and orange in Figure 

E.1.5. These hairs move from the vibrations of the basilar membrane and the fluid in the 

space enclosed by the tectorial membrane, and then transmit their data to the nerve cells 
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colored pink in Figure E.1.4. It is known from (Bekesy, 1960) that fluid motion exists in 

the other chambers of the cochlea, but current theories hold that only the fluid motion in 

the tectorial chamber actually stimulates the hair cells.

Figure E.1.4  Extreme Close-up of a Section of the Organ of Corti

From (Firefly, 2002)

These images are presented because they illustrate the complexity of the human 

audio data collection hardware. Whereas a computerized audio system uses two CD qual-

ity channels (44,100 samples/second, 16 bits/sample), the ear has millions of individual 

transducers, each collecting time based data at different locations, with patterns of time 

delays, phase and frequency values amongst these information channels being correlated 

by the neural networks in the audio cortex and brain. All of these information pathways 

essentially represent continuous functions in real time, while the computerized data form 

has very coarse granularity in both time and frequency. The action of the nervous system 
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is encoded as discrete nerve impulses rather than a continuous function in the mathemati-

cal sense, but the enormous number of different nerve impulses and pathways can be seen 

to approximate a true continuous function to a very fine granularity in both time and 

frequency. (Bekesy, 1960) reports detecting eddy currents in the cochlear fluids caused by  

sound vibrations. The hair cells in Figures E.1.4 and Figure E.1.5 respond to these fluid 

movements (in the tectorial chamber) as well as responding to vibrations in the basilar 

membrane. Neuroscience is currently charting these pathways.

Figure E.1.5  Extreme Close-up of Frequency Sensing Cells

From (Firefly, 2002)

The transformation of audio signals into neural patterns and hence cognitive per-

ceptions is complex and not completely understood. The main result of the process is the 

extraction of frequency and direction information from the incoming audio signal, and 

fusing the information into a continuous three dimensional perceptual reality. This is an 
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area for further research. Plomp gives a history of such scientific investigations, and cau-

tions strongly to avoid being trapped by a priori thinking like reductionism (he calls it 

microscopic view). Apparently many researchers in the 150 years or so of acoustic sci-

ence have believed that hearing is somehow a relatively simple process, much as early 

microbiologists thought that the interior world of a living cell is “formless protoplasm”.

Helmholtz in the 19th century started the study of the physics of hearing, and pro-

posed the “tuning fork”, or “piano strings” model, which sees the cochlea as a fancy Fou-

rier series analyzer that measures exact frequency components of the audio and passes 

them to the brain which extracts information and patterns. (Bekesy, 1960) showed that 

the cochlear response to frequency is more complex and subtle than merely being a row 

of finely spaced tuning forks as Helmholtz envisioned. 

Audio vibrations enter the cochlea by the vibration of the stirrup bone on the oval 

window at the front of the cochlea. The signal is transmitted into the cochlea not as vibra-

tions, but rather as a series of traveling wavefronts corresponding to the inward push on 

the eardrum by each incoming audio wave. These are transmitted by the bones of the in-

ner ear (hammer, anvil, stirrup) to the oval window of the cochlea where they launch a 

wave disturbance in the upper chamber of the cochlea. Figure E.1.6 shows the eardrum 

and bones of the middle ear. The time for a wavefront to travel along the basilar mem-

brane ranges from less than 0.1 millisecond for high frequencies to about 10 milliseconds 

for the lower limit of 20 Hz (Bekesy, 1960). Due to damping, the high frequencies only 

excite vibrations for a short distance, while low frequencies power curves peak at the far 

end of the cochlea. 

The backward action of the incoming vibrations apparently has no effect on the 

frequency sensing hairs, which are only activated by the wavefront in the forward direc-

tion (Dowling & Harwood, 1986). These wavefronts are complex curves representing the 

instantaneous sum of many frequencies which are present in the audio signal, and the ear 
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extracts instantaneous frequency information from them. With each wavefront, different 

frequency information is induced as vibrations on the basilar membrane. The tuning of 

the basilar membrane creates power curves (traveling waves) from the incoming wave-

fronts, rather than vibrating at a particular frequency per se. Figures E.1.7 through E.1.11 

show several aspects of the traveling wave phenomenon from (Bekesy, 1960) who 

mapped the frequency response of the basilar membrane. Note that the wave shapes of 

the traveling waves have power peaks at different locations along the length of the basilar 

membrane. Additionally, as the wavefront moves through the cochlear fluid, the basilar 

membrane shape flexes into unique shapes determined by the frequency and loudness in-

formation. The action of the basilar membrane short circuits the wavefront of particular 

frequencies at the location of the cochlea which is sensitive to that frequency. The energy 

from the wavefront is thus transmitted to the lower cochlear chamber by the basilar 

membrane, reducing or eliminating the energy at that frequency in the upper chamber be-

yond the sensitive location for that frequency. The entire collection of the various vibra-

tional responses is probably encoded as a Gestalt as well as being decomposed by 

frequency (Plomp, 2002).
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Figure E.1.6  Eardrum and Middle Ear Bones

From (Firefly, 2002)
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Figure E.1.7  Power vs Distance Curves in Cochlea for Several Frequencies

Figure E.1.8  Traveling Wave for 200 Hz at Several Moments in Time

From (Bekesy, 1960)
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Figure E.1.9  Waveform, First, Second Derivatives, and Integral for 200 Hz

Figure E.1.10  Traveling Wave, Showing Generation of Eddy Currents

From (Bekesy, 1960)
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At low frequencies, below about 100 Hz, the entire basilar membrane vibrates as 

a whole. Above about 200 Hz, the frequency sensors mentioned above are affected by the 

incoming vibrations. From approximately 200 to 2000 Hz there are two mechanisms for 

extracting information from the audio signal: the frequency sensors, and detection of beat 

patterns in the incoming waveform. The beat patterns are caused by constructive and de-

structive interference between waves present in the external three dimensional space, 

much as waves on the surface of a pond have peaks and troughs as they intersect each 

other. The results of both the beat and frequency detection mechanisms are interpreted as 

tonal information at higher cognitive levels in the audio cortex. The incoming beats di-

rectly trigger nerve impulses, while the frequency sensors respond to wave shapes of the 

incoming vibrations. Nerve cells have a limit to how fast they can fire, and so above ap-

proximately 2000 Hz (0.5 milliseconds), only the frequency sensors extract information. 

The beat pattern extraction mechanism operates down to extremely low frequencies, well 

below the 20 Hz “limit” of human hearing. At very low frequencies, the beat patterns are 

perceived as individual events rather than tones (Dowling & Harwood, 1986). NB: the 

beat phenomenon as reported by Dowling & Harwood may be erroneous. Events with 

fast onsets such as percussion sounds have time scales for the onsets in the frequency 

range of the beat mechanism. Thus there may be some recognition of such events in the 

front end of audio processing, as well as later in the cortex where neural processing 

stages extract timing information from the changing input stream. This phenomenon is an 

important consideration for the Ile Aye caixa experience described in Appendix A.

Each frequency sensing hair is broadly tuned, responding to a range of frequen-

cies. Due to the traveling wave effect, the power distribution along the cochlea takes on 

different waveforms depending on the frequencies in the signal as described by (Beke-

sy,1960). The spatial variations of the power distribution is used for distinguishing differ-

ent frequencies. The amplitude increases as the wavefront moves into the area of the 

cochlea that is tuned to the frequencies corresponding to the incoming wave shape. After 
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the wavefront passes through the tuned section, the amplitude begins to decrease. The 

detection of the peak is enhanced by lateral inhibition from nearby frequency sensors 

whose signal strength is less than the peak. The neurons in the audio cortex subtract this 

nearby data from the power distribution waveform, sharpening the peak relative to the 

broad waveform. This is one of the reasons we hear precise tones rather than a smeared 

combination of frequencies. (Dowling & Harwood, 1986). NB: Dowling & Harwood may 

be incorrect about their lateral inhibition report. While lateral inhibition is proven to have 

a significant role in visual perception, research in audiology has not produced clear evi-

dence that lateral inhibition operates in hearing perception.

There is substantial evidence that the ear produces sounds by itself, called oto-

acoustic emissions. These sounds have been detected by sensitive microphones placed in 

the outer ear. It is not entirely clear what role these sound emissions play in hearing, but 

theories that they assist in frequency discrimination are the most prevalent3.

Mathematical models of the basilar membrane vibrations are commonly used in 

neuroscience research. Figure E.1.11 is an example which shows patterns of a normal 

frequency response, and one with a damaged basilar membrane. We include this because 

it provides two insights. First, it is a clear intuitive example of how loss of proper vibra-

tional response of the cochlea contributes to hearing impairment. Second, it actively 

shows how the physiology of the ear helps to generate forms of information from the in-

put sound vibrations, due to the nonlinear resonant action of the tissues and fluids. Artifi-

cial neural networks rely heavily on nonlinear response for teasing out subtleties in com-

plex entanglements of signals.4 DSP uses linear processing for the most part, and conse-

quently is more limited in the availability of information than a nonlinear system.
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Figure E.1.11  Mathematical Model of Vibrations in the Basilar Membrane

From (Giguere & Smoorenburg, 1999) in (Dau et al., 1999)
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Other mechanisms for transforming data into information features will no doubt 

be discovered by neuroscience in the coming years. We have scratched the surface with 

our readings in (Dau et al. 1999). We believe that percussion events are very useful in this 

type of research because the onset of events is very short, typically from 1 millisecond up 

to about 40 milliseconds. These quick events are easier to track in the audio cortex using 

EEG than are more complex sounds, such as speech or melodic instruments. Percussion 

events are more complex than the audio signals used in psychology research which are 

typically simple sine waves or square pulses. The complexity of the percussion sounds 

can be used to study the pattern recognition pathways in the audio cortex.

E.2  Psychological Studies of Human Perception

(Fraisse, 1982), (Deutsch, 1992) and others have done perceptual studies that 

identify certain time ranges as “natural” for human imitative tapping and rhythm. These 

are mostly in the tempo range of standard music pieces. If tempo increases or decreases 

beyond the natural range, most people shift to the next higher or lower synchronized pat-

tern whose timing fits in the natural range.

This background information is relevant to the story in the appendix about learn-

ing the caixa batida from Ile Aye. We also reference human timing perceptual issues in 

our descriptions of creating seamless rhythmic loops. Our experience leads us to the con-

clusion that some of the standard psychological models of reaction time and human re-

sponse time in general are inadequate. All of the studies we have read have tested sub-

jects using isolated sequences of events. We have found that temporal context of patterns 

of events is an important part of a perceptual mechanism that is temporally more fine 

grained that the standard models of human time perception.

E.3  Human Emotions and the Meaning of Music

The connection between music and emotions is widely, perhaps universally, rec-

ognized. “Music hath charms to tame the savage beast” is an old folk saying, and music 
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has been used for therapeutic medical purposes. Recently, researchers have applied mod-

ern methods such as electro-encephalogram (EEG) to monitor a subject’s physiological 

responses during music therapy (Fox, 2005). This is strong support for our contention 

that music, health and emotional well being are closely related. It also supports our pur-

pose to facilitate the learning, teaching and playing of music by using technical ap-

proaches that help people understand non symbolic information and other subtleties 

which are fundamental to music.
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