
CHAPTER 3.   DSP WORK

We investigated several DSP techniques for this project. The most practical we 

found is the Short Time Fourier Transform (STFT). STFT performs a sequence of win-

dowed FFTs on a data set, with the next FFT starting a fixed time delta after the current 

FFT. Generally we used a Hanning window (a variation of a Gaussian bell curve, see fig-

ure 3.3), slightly shorter than the length of the FFT. A few experiments using other win-

dowing strategies suggest that this is an area that could be substantially optimized, but 

these refinements are not within the scope of this thesis. 

The time duration of most audio samples we look at is less than twenty seconds, 

which means there are several hundred thousand individual data points representing the 

audio signal. For simplicity we look at mono signals, because the rhythmic patterns we 

study can be considered as a single stream of note events. More subtle analysis of music 

should process all available sources of information: both stereo channels, comparison of 

phase information for correlated harmonics representing a single instrument, or changes 

of power level and frequencies in a sound that indicates features like tremolo or vibrato.

Wavelet processing is an interesting modern technique (1990’s) which blends time 

and frequency processing into a single framework, decomposing the signal into a metric 

space that uses the set of wavelets as basis functions. We have done lengthy work with 

wavelets, motivated by the appealing concept of performing time and frequency process-

ing together, plus the potentially high performance that wavelets deliver in some cases. 

Our investigation did not lead us to a good unified approach using wavelets, and so we 

returned to using the simpler and more straightforward FFT as our primary DSP tool.
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3.1  Spectra and Time Series

Figure 3.1 shows a spectral analysis of an audio sample that is typical of all sam-

ples passed through our algorithm. We chose it to introduce our work with spectra and 

STFTs because it clearly portrays both simple and advanced musical events that we want 

to identify. This figure shows Natalie Cole singing a chorus of Fever. Elapsed sample 

time is displayed in seconds along the lower (X ) axis (turn the page sideways) where the 

lyrics are also shown. The total time for the Fever sample is about 14.3 seconds. We 

compute several thousand FFTs on the sample in order to get a representation of how the 

spectrum changes in time. An FFT is computed at the beginning of the sample, then the 

FFT window is shifted forward in time by a small delta and another FFT is computed, 

and so on until the end of the sample. All FFTs use the same window size. In this exam-

ple the window size is 2048 data points of the original music sample (2 Ksamples). The 

time shift between FFTs is much smaller than the FFT window size. In this example we 

use 441 data points of the audio sample as our time delta. At 44,100 Ks/sec, an FFT shift 

of 441 points means 10 milliseconds resolution in the specgram. A shift of 132 points 

equals 3 milliseconds, and so on. More detailed analysis is presented in the next section. 

A 2 Ks audio sample gives an FFT spectrum of 1025 evenly spaced frequencies. 

The number of frequencies is computed as (N/2) + 1 where N is the size of the FFT win-

dow (2048). The frequencies found by the FFT are displayed on the Y axis, from 20 Hz to 

22,500 Hz which is the Nyquist frequency of the CD sampling rate. Dividing 22,500 by 

1025 gives a frequency resolution of about 22 Hz for the 2 Ks FFT. A 1 Ks FFT gives 

frequency resolution of about 44 Hz, and a 4 Ks FFT yields 11 Hz resolution. There is a 

tradeoff between resolution in the time and frequency dimensions. While this frequency 

resolution is sufficient for the current work, it is quite limiting. There are some important 

efficiency and optimization issues that we explore in the section on future work.

The somewhat regularly spaced sharp vertical red lines are primarily finger snap 

and conga events, and also include some portions of other drum sounds. The yellow tips 
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extending into the blue “sky” that are exactly evenly spaced are Ray Charles snapping his 

fingers on the back beat. Specgram colors are determined by the audio power of each fre-

quency at each time point, normalized to [0,1]. Blue is low and red is high power.

In the lower third of the diagram are patterns of wavy red lines, regularly spaced 

in the vertical axis. This is the spectrum of Natalie Cole’s voice. You can visually corre-

late these frequency features with the lyrics written below. The concentration of red at the 

bottom are the frequencies generated mostly by bass drum and bass guitar. These signals 

are less well defined than a human singer or melodic instrument like a trumpet. This is 

partly a limitation of the FFT frequency resolution, partly typical of features that can be 

extracted at low frequencies and partly spectral structure of the sounds of these instru-

ments per se. Both the physics of sound waves and the physiology of the human ear limit 

the information available at these low frequencies. These physical limits are probably part 

of why the human voice uses a higher range of frequencies, 200 Hz to several thousand 

Hz, to encode the majority of speech information.

The details of the correlated frequencies of Natalie Cole’s voice are the data that 

give rise to our perception of timbre which is the quality of sound that we associate with 

identifiable audio events such as words or phonemes (speech), and musical instrument 

identification. As noted in (Dowling & Harwood, 1986) the higher frequencies (200 Hz to 

5000 Hz) encode most of the information about timbre as heard by humans. These fre-

quencies are directly perceived in the human ear by stimulation of frequency sensing 

“hair” cells in the cochlea. The frequency responses of the hairs is determined by their 

location in the cochlea, with high frequencies being sensed near the eardrum, and lower 

frequencies sensed at the far end of the cochlea. Pitch (or tone) is encoded more in the 

lower frequencies (20 Hz to 2000 Hz) which are sensed both by the frequency sensitive 

hairs as well as the beat phenomenon (see Appendix E). This is a reason why most me-

lodic information is in the middle and lower frequencies: the precision of our pitch per-

ception diminishes as the frequency goes above about 5000 Hz. Our sensitivity to higher 
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pitched sounds is not diminished -- hearing the snap of a twig makes the difference be-

tween the tiger having you for lunch or not. At high frequencies however, direction and 

distance are more important information than precise identification of pitch. (Dowling & 

Harwood, 1986) discuss this aspect of human hearing in some detail. They also mention, 

as does (Buser, et al. 1992), that human tone perception is not perfectly correlated with 

the measured frequency.
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Figure 3.1 Spectrogram for Natalie Cole singing the chorus of Fever
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3.2  FFT and STFT

An FFT returns an array of the frequencies contained in a musical sample during a 

particular short time slice of data. The frequencies change quickly and incessantly 

throughout any “interesting” sound. Of course there is music with very slow moving 

changes of frequency content which is also interesting, e.g. Pink Floyd, or classical Pas-

toral music. Our techniques could be applied successfully to this sort of music, but in this 

work we only investigate music with quick events. In order to generate a picture of how 

the frequency spectrum of a music sample changes in time, we apply the FFT repeatedly 

with a slight time change between successive FFTs. This is commonly referred to as 

Short Time Fourier Transform (STFT), yielding a spectrogram or, as Matlab calls it, 

specgram. The time/frequency tradeoff is very important for making an STFT useful. A 

short FFT gives coarser frequency resolution and finer time resolution. Conversely, a 

long FFT give more frequency detail, but for a sample whose frequencies are averaged 

together over a longer time, yielding a less precise view of the temporal changes. De-

pending on the frequency content of a piece of music, adjusting the frequency and time 

granularities brings the resultant specgram into clearer “focus,” in the sense of rendering 

particular details more or less clearly. These adjustments are very much like focusing a 

camera lens, but rather than focusing a spatial image, we change between looking more 

precisely at time or looking more precisely at frequency. There is a fundamental limit to 

the total precision, governed by the equivalent of the Heisenburg uncertainty principal.

The STFT approach we use performs a sequence of overlapping FFTs on the mu-

sical audio data. The FFT window size (time slice) for any particular run of the algorithm 

on a music sample is constant, e.g. a time slice of 1024, 2048 or 4096 samples of input 

data (1024 samples == 1 Kilo sample or 1 Ks). These three window sizes correspond to 

time intervals of 23, 46 and 93 milliseconds respectively, at the CD sample rate of 44,100 

samples per second. The FFTs yield a frequency resolution of 44, 22 or 11 hertz respec-

tively for 1 Ks, 2 Ks and 4 Ks lengths. We tested a few samples with 8192 length FFTs, 
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but in these cases the time span of the FFT significantly blurs the frequency details, and 

were generally not very useful. Similarly, using a 512 sample window for the FFT pro-

duces a very choppy picture of how the music sample changes in time, which makes de-

tecting note events difficult due to the numerous small spikes in the temporal waveforms 

that we generate from the STFT. 

The time slice and frequency information for a particular set of STFT parameters 

can be computed with simple algebra. For a time slice (i.e. FFT window size) of Nts data 

points, and sampling frequency Fs samples/sec, the time occupied by the FFT window Tfft 

is given by Tfft = Nts / Fs . For convenience and efficiency we use powers of 2 for the size 

of Nts , e.g. 1024 = 210 , 2048 = 211 , 4096 = 212 . In some cases we use an FFT window 

which is the sum of numbers that are powers of 2, e.g. 3072 = 211 + 210 . After performing 

the FFT, we obtain a vector of frequencies contained in the audio sample. The number of 

frequencies NF is determined by the FFT window size, counted in audio data points. The 

formula is NF = ( Nts / 2 ) + 1 , so a 2048 point FFT yields 1025 distinct frequencies. The 

specific frequencies contained in the frequency vector are integer multiples of the “fun-

damental” frequency of this particular FFT, based on the formula Ffund = 1 / Tfft , so the 

frequency set is given by F{} = { n * Ffund : n = 1, 2, 3, ... NF } .   

The time shift between FFTs is the same for each run of the algorithm. Depending 

on what temporal resolution we want, we may run a sample several times with different 

time shifts in order to find an optimal resolution for specific musical features. In some 

cases we will present results with several different time/frequency settings for the same 

music sample. Typically we used time shifts between 3 and 10 milliseconds, although we 

tested some music samples using as short as 0.5 milliseconds time granularity. 

The frequencies in the spectrum of the FFT are equally or linearly spaced: the dif-

ference between adjacent frequencies in cycles per second (Hz) is the same whether they 

are low frequencies or high frequencies. This is inherent to the design of Fourier Analy-
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sis, and we consider it a disadvantage, which we explore in chapter 6. The frequency 

spacing in the human perceptual apparatus, and also in the spacing of note pitches in mu-

sic is exponential. This means that the “distance” between adjacent notes as measured in 

Hz increases for higher frequencies and decreases for lower frequencies. Given two pairs 

of different adjacent notes on the keyboard, there are no two pairs that have the same fre-

quency distance in Hz between note N-1 and N-2 compared to N-3 and N-4. For exam-

ple, the number of notes between middle C and the C above or below is the same: seven 

white keys and five black keys on a piano, i.e., twelve half steps. The frequency in Hz of 

the tone corresponding to these C notes is doubled if you go up the scale or divided in 

half if you go down. This means that the frequency spacing of the notes within each oc-

tave is also doubled or divided in half compared to the corresponding note one octave 

below or above the note being currently examined. In practical terms, there are too many 

frequencies measured by the FFT in the upper part of the spectrum, and not enough dif-

ferent frequencies delivered by the FFT in the lower part of the spectrum.

3.3  Windows and Filters

Windows are scaling functions used in conjunction with the FFT algorithm for the 

purpose of improving results and decreasing false artifacts in the transformed data. A 

window is typically a simple function such as a gaussian curve that modifies the current 

slice of audio data, prior to the FFT. This modification is simply a sample by sample mul-

tiplication of the audio data and the window data. This yields a data slice of the same 

length as the original data that is smoothly reduced to zero at the beginning and end of 

the slice. The main effect of this pre-processing is to reduce or remove aliasing artifacts. 

These are the result of wraparound effects in the Fourier transform when it converts the 

audio data from the time domain to the frequency domain. For a detailed technical analy-

sis, see (Brigham, 1974), (Press et al., 2002), and (Hamming, 1983). Figure 3.3 shows a 

sample of audio data (green), gaussian window function (blue) and the composite (red), 
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ready for passing into the FFT. Hundreds or thousands of such slices are processed for 

every musical sample processed by the STFT. 

Filters are functions applied to incoming data which change the frequency content 

of a data sample by reducing or amplifying some range of frequencies. This may simplify 

subsequent processing of the data sample, or the filtering step can produce useful results 

directly such as measuring the power of the signal in the range of the filter. Our analysis 

of the compute costs of filter processing compared to FFT processing led us to prefer the 

FFT for the current work. The FFT approach was similar in compute cost and substan-

tially simpler in system design, saving development time. 

Figure 3.3  Audio Data, Window Function and Composite Result for FFT

3.4  ICA (Independent Components Analysis)

Independent components analysis is a recently developed technique useful for 

separating several sources of data that are mixed together in one or more data streams 
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(blind source separation or BSS). We briefly investigated this approach during work on 

note identification. Figure 3.4 shows how ICA might be used for identification of an in-

strument’s note events by compositing a short data sample of the desired instrument 

sound with a longer data stream. In essence, this is a form of autocorrelation, but one that 

matches statistical patterns rather than exact waveforms. The bold, clear vertical line of 

correlated data points and the elliptical “galaxy” indicate that the data stream included the 

sound of the pandeiro in this case. This is a promising area for future research.

(Anemüller & Gramss, 1999) used artificial neural networks in preference to ICA 

for the task of source separation, claiming fast learning (about one second) for their algo-

rithm to be able to distinguish two mixed sounds recorded in an anechoic chamber. Their 

network topology was a variation of feed forward multi-layer perception.

Figure 3.4  ICA Autocorrelation Plot Showing Identification of Pandeiro

3.5  Wavelets

Wavelet analysis decomposes a single large data set into several smaller data sets. 

These are determined, analogously to Fourier analysis, in terms of basis functions span-
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ning a function space (Hilbert or Banach space). The function space for our work is sim-

ply the waveforms of the audio samples being analyzed. Fourier analysis creates a set of 

sine and cosine waveforms and their amplitude coefficients which, when added together, 

recreate the original waveform. Similarly, wavelet analysis uses a mother wavelet and 

copies of the mother wavelet which are scaled and translated so that the resultant set of 

waveforms and their coefficients will accurately represent the original waveform.

We investigated wavelets hoping to use them as a source of features for identifica-

tion of note events contained in the data set. Wavelets could be used to identify note 

events, while also identifying the temporal location of these events in the audio stream. 

Our preliminary investigation and several papers in the computer music research field 

indicate that wavelets could be a useful analysis framework for musical note events and 

audio streams. We chose to abandon this line of research due to its technical difficulty 

and because of efficiency and scalability concerns. While an individual musical note 

event is both tractable and practical to analyze using wavelets, the extension to analyzing 

a complex audio stream with multiple instruments would entail a compute cost that we 

think scales at least as O( N2 ) or worse for a number N of different note types. In con-

trast, Fourier analysis using the FFT is an O( N log(N) ) operation. These numbers are 

merely indicative, and a complete analysis would involve considering both the number of 

steps in either the wavelet or FFT process, as well as the true compute cost of each step. 

We believe that wavelets could be used in an effective and efficient manner, but would 

require a deep knowledge of mathematics (Hilbert space etc) that is beyond our expertise.

3.6  Zero Crossings 

Zero crossings are time points where the input audio signal power level (voltage 

or sound pressure level) goes from positive to negative or vice versa. The data points 

themselves may not equal zero exactly, in which case we noted the time points of sign 

changes and plotted the time of the first data point after the sign change as a zero crossing 
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event. While this technique is commonly cited in the literature, its utility was not imme-

diately obvious for our work and after a short investigation moved on to other techniques. 

Figure 3.6 shows a short sample of a pandeiro pee note event, with zero crossings 

marked as sets of blue dots along the two horizontal lines Y = ± 0.8 . The audio sample is 

plotted in cyan. We count the zero crossings and show this count by the red, black, blue 

and magenta dotted lines. The blue line shows the count in a moving 40 data point win-

dow, red uses an 80 point window, black uses a 160 point window and magenta uses a 

320 point window. The lines for the counts are normalized to fit into the same vertical 

scale as the audio waveform. Thus the lines show the relative count rather than the abso-

lute count of zero crossings in their respective windows.

Figure 3.6  Zero Crossings in a Pandeiro Note Event (close-up)
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3.7  Signal and Noise 

For the most part, the music recognition literature differentiates percussion sounds 

from melodic and other instruments. This is a reasonable distinction because harmoni-

cally correlated sounds such as pitched or melodic instruments are fundamentally differ-

ent from most percussion note events, which tend to have strong non harmonic features 

and characteristics. The jargon used to describe these distinctions, however, is sometimes 

misleading and should be amended in favor of more accurate language.  

While there is some discussion about the pitch qualities of percussive sounds, 

percussion and drum sounds are commonly referred to as “noise”. We believe this is es-

sentially an ignorant viewpoint. Noise is merely information that is not properly under-

stood. The canonical form of noise, white noise, is an idealized gaussian distribution of 

all frequencies with very useful properties. Noise as a name for some more generalized 

category of information takes on a wide variety of characteristics. In audio production, a 

low level noise signal, e.g. water or wind sounds, is commonly used as “bed” or founda-

tion for the mix of a soundtrack. This provides subliminal shaping of the listener’s per-

ception of the meaning of the soundtrack and if done skillfully, greatly enhances the be-

lievability of the soundtrack. Usually this is very skillfully mixed to the point where most 

listeners are not explicitly aware of this shaping of perception. Another common use of 

noise is in the visual effects industry for film, where libraries of “film grain” are always 

used to help blend the computer generated graphics with real world scenes. Early produc-

tions in the 1980’s and 1990’s (e.g. The Abyss or Babylon 5) would sometimes omit the 

film grain and the special effects from these early works have a very “clean” quality, 

whereas modern computer effects are blended much more skillfully with real world foot-

age. Again, most people who are not professionals in the field are rarely aware of these 

subtleties, but the presences of this noise work greatly enhances the immersive believ-

ability of the audio or visual piece. 

 38



While percussion sounds are complex statistical entities having far less harmonic 

correlation than melodic instruments, there is little difficulty for our human perceptual 

system to distinguish between most types of individual percussion note events, even if 

they are very similar to each other, or mixed with several other instruments’ sounds. Thus 

these sounds are not noise in the sense of being random or unpredictable. 

In our work we easily distinguish different drum note events by using a simple 

frequency based approach, without resorting to any statistics. We have also seen exam-

ples where the simple frequency summing technique fails to separate two somewhat simi-

lar sounds, such as caixa and shaker. From our survey of the research literature, we ex-

pect that refining our note identification process by using simple statistics will produce 

useful improvements with moderate effort. We discuss this a bit further in chapter 6.

3.8  Description of Our DSP Algorithm 

Our DSP algorithm (chkdot.m) performs an STFT on musical audio data, fol-

lowed by note event identification logic, and marking of timing patterns. This is imple-

mented as a Matlab script, listed in the appendix. For input data, the code takes a vector 

of digital audio data, the FFT length, and time delta for shifting to the next FFT. This 

stage produces the specgram which we then inspect to determine what frequency ranges 

to use for identifying note events. Optimizing tradeoffs between time and frequency reso-

lution often requires testing several different sets of parameters to get a truly useful 

specgram. The transformed spectral data, lists of frequencies in the spectrum and time 

points of the shifted and overlapped FFTs are retained by Matlab as script internal data 

and used in subsequent passes through the algorithm for analyzing the specgram. Since 

computing the specgram can be as much as several hundred times more compute cost 

than running a time/frequency analysis, this allows us to perform multiple analyses of a 

single useful specgram, in order to get the best results possible in minimum time. This 

design can be easily adapted for use in a GUI, which we have not yet implemented.
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Subsequent passes through chkdot use several vectors and matrices for guiding 

the DSP and note ID logic. These include a vector that specifies which frequency ranges 

to use for identifying note events (event tracks), a vector specifying how note events 

should be counted in the pulse track, a vector specifying in which secondary event tracks 

to mark events, a vector indicating how to subdivide the sample time based on the pri-

mary events detected in the pulse track, and a matrix of threshold values to use on the 

waveform in each event track. Thresholds can be specified for the waveform itself and its 

first and second derivatives. For each time slice, in each frequency range, we sum the 

values of each FFT for the frequency ranges specified in the frequency vector. This gives 

a sequence of points that represents, for each time frame, the signal’s audio power in the 

current frequency range. These points are plotted as time series that show the changing 

power levels of the audio signal in the several frequency ranges specified.

The primary pattern recognition logic, after the STFT, uses thresholds of the am-

plitude changes between the time frame data points. We use the power level of the signal, 

and the first and second derivatives implemented as first and second order difference 

equations. Figure 3.8 shows a composite of the waveforms for the standard pandeiro ba-

tida, along with the first and second derivatives of the waveform.

Figure 3.8 Pandeiro Waveform, First and Second Derivatives
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